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Abstract—LiDAR-camera extrinsic calibration (LCEC) is cru-
cial for data fusion in intelligent vehicles. Offline, target-based
approaches have long been the preferred choice in this field.
However, they often demonstrate poor adaptability to real-world
environments. This is largely because extrinsic parameters may
change significantly due to moderate shocks or during extended
operations in environments with vibrations. In contrast, online,
target-free approaches provide greater adaptability yet typically
lack robustness, primarily due to the challenges in cross-modal
feature matching. Therefore, in this article, we unleash the full
potential of large vision models (LVMs), which are emerging as
a significant trend in the fields of computer vision and robotics,
especially for embodied artificial intelligence, to achieve robust and
accurate online, target-free LCEC across a variety of challenging
scenarios. Our main contributions are threefold: we introduce a
novel framework known as MIAS-LCEC, provide an open-source
versatile calibration toolbox with an interactive visualization in-
terface, and publish three real-world datasets captured from var-
ious indoor and outdoor environments. The cornerstone of our
framework and toolbox is the cross-modal mask matching (C3M)
algorithm, developed based on a state-of-the-art (SoTA) LVM and
capable of generating sufficient and reliable matches. Extensive
experiments conducted on these real-world datasets demonstrate
the robustness of our approach and its superior performance com-
pared to SoTA methods, particularly for the solid-state LiDARs
with super-wide fields of view. Our toolbox and datasets are publicly
available at https://mias.group/MIAS-LCEC.

Index Terms—LiDAR-camera extrinsic calibration, intelligent
vehicle, large vision model, embodied artificial intelligence.
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I. INTRODUCTION

A. Background

L IDARS provide accurate spatial geometric information,
while cameras capture rich textural details [1], [2], [3],

[4]. Fusing data from both sensors enables intelligent vehicles
to achieve more comprehensive 3D environmental perception
[5], [6], [7], [8], [9], [10], [11], [12]. LiDAR-camera extrinsic
calibration (LCEC) forms the foundation for this data fusion
process [13], [14], [15], [16], as illustrated in Fig. 1. It basically
estimates an extrinsic matrix C

LT , defined as follows [17]:

C
LT =

(
C
LR

C
L t

0� 1

)
∈ SE(3), (1)

where C
LR ∈ SO(3) represents the rotation matrix, C

Lt denotes
the translation vector, and 0 represents a column vector of
zeros. In this article, the symbols in the superscript and sub-
script denote the source and target sensors, respectively. When
the camera intrinsic matrix K is known, a 3D LiDAR point
pL = (xL; yL; zL) can be projected onto a 2D image pixel
p = (u; v) using the following expression:

p̃ =
K(CLRpL + C

L t)

(CLRpL + C
Lt)

�1z
, (2)

where p̃ represents the homogeneous coordinates of p and
1z = (0; 0; 1). While extensive research on offline, target-based
LCEC has yielded numerous effective and robust algorithms
over decades, online, target-free methods, especially for solid-
state LiDARs, remain less explored [18]. Consequently, this
study aims to bridge this gap by leveraging state-of-the-art
(SoTA) large vision models (LVMs).

B. Existing Challenges and Motivation

Existing online, target-free LCEC approaches first extract
distinctive features, e.g., line/edge features [18], [19], [20], [21],
[22], [23], point features [24], [25], or semantic features [26],
[27], [28], [29], [30], from RGB images and LiDAR point clouds
(spatial coordinates along with reflection intensities). These
features are subsequently matched to produce cross-modal cor-
respondences.

While line/edge feature-based LCEC approaches are highly
efficient, their effectiveness is often limited by the requirement
for sufficient and properly distributed edge features, confining
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Fig. 1. Visualization of the experimental results achieved using our proposed online, target-free LCEC algorithm.

their applicability to particular environments [18], [23]. First,
edge detection algorithms typically identify straight lines, result-
ing in inadequate edge representations for objects with spherical
or cylindrical geometries [20], [21]. Moreover, in scenarios
where edges are predominantly aligned in one direction, the
constraints may not be sufficient to uniquely determine the ex-
trinsic parameters [19], [22]. Such scenarios can lead to solvers
converging on local optima. Additionally, an uneven distribution
of edges in an image can result in weak constraints that are
susceptible to being influenced by measurement noise [21].

On the other hand, point feature-based LCEC approaches
require distinctive 2D image pixels and 3D LiDAR points, char-
acterized by significant changes in intensity or depth across all
dimensions. However, this dependency may lead to a scarcity of
viable correspondences, especially in low-texture environments
[25]. Additionally, these methods often overlook the alignment
of the field of view (FoV) between LiDAR and camera, resulting
in excess of irrelevant points within the LiDAR point clouds,
adversely impacting the LCEC process’s stability [24].

Recent advances in deep learning techniques have spurred
extensive exploration of semantic feature-based LCEC ap-
proaches. Although these approaches have shown compelling
performance in specific scenarios, such as parking lots, they
predominantly rely on curated, pre-defined objects, e.g., vehicles
[28], lanes [27], poles [26], and stop signs [30]. However,
challenges such as domain shift (caused by differences in appear-
ance, lighting conditions, or object distributions) and annotation
inconsistency (different datasets often have diverse annotations)
often impair the ability of these algorithms to generalize effec-
tively across new, unseen scenarios.

Since 2023, LVMs have rapidly emerged as a focal point in
the fields of computer vision and robotics. Models like Seg-
mentation Anything (SAM) [31] and DINOv2 [32] by Meta
AI, have attracted significant attention and interest due to their
exceptional generalizability across new, complex, and challeng-
ing scenarios [33]. Therefore, this study aims to leverage SoTA
LVMs to extract more informative features and develop a more
robust cross-modal feature matching strategy, thereby improving
the overall performance of online, target-free LCEC.

C. Novel Contributions

Therefore, in this article, we move one step forward in the
field of online, target-free LCEC by unleashing the potential of
MobileSAM [34], a SoTA LVM for image segmentation. First,
we develop an online, target-free LCEC approach, referred to
as MIAS-LCEC, which employs a novel coarse-to-fine strategy
to accurately estimate LiDAR-camera extrinsic parameters. To
minimize the modality discrepancy, we formulate the 3D-2D
feature matching as a 2D-2D feature matching problem by
introducing a virtual camera (whose pose is iteratively updated)
to project the given LiDAR point cloud, thereby generating a
LiDAR intensity projection (LIP) image, which appears as if
it were taken from the perspective of the actual camera. This
addresses the oversight of FoV alignment in the prior study [24]
and helps achieve more effective and robust 3D-2D correspon-
dence matching. Subsequently, both the LIP and RGB images
undergo segmentation using MobileSAM. These segmentation
results are then processed using a novel cross-modal mask
matching (C3M) algorithm, capable of generating sparse yet
reliable matches, which are propagated to target masks for dense
matching. Finally, the obtained correspondences serve as inputs
for a Perspective-n-Point (PnP) solver to derive the extrinsic
matrix. Additionally, we launch a powerful toolbox with an in-
teractive visualization interface. This toolbox also incorporates
the manual calibration functionality, thereby further improving
its utility. We collect three real-world datasets (from a variety
of indoor and outdoor environments under various scenarios
as well as different weather and illumination conditions) using
a CMOS camera and different types of solid-state LiDARs to
comprehensively evaluate the performance of LCEC algorithms.
Through extensive experiments conducted on these datasets,
our proposed MIAS-LCEC demonstrates superior robustness
and accuracy compared to other SoTA online, target-free ap-
proaches. Moreover, it achieves a similar performance to that of
an offline, target-based algorithm. Our toolbox and datasets are
publicly available at https://mias.group/MIAS-LCEC.

In a nutshell, our main contributions are as follows:
� MIAS-LCEC, an online, target-free LCEC approach,

which employs a novel coarse-to-fine strategy to accurately
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estimate LiDAR-camera extrinsic parameters by unleash-
ing the potential of MobileSAM, a SoTA LVM for image
segmentation.

� C3M, a novel and robust cross-modal feature matching
algorithm, capable of generating dense and reliable corre-
spondences.

� A versatile LCEC toolbox with an interactive visualization
interface and capable of conducting online, target-free
calibration and manual calibration.

� Three real-world datasets (containing dense 4D LiDAR
point clouds and RGB images captured from a variety of
indoor and outdoor environments), created to comprehen-
sively evaluate the performance of LCEC algorithms.

D. Article Structure

The remainder of this article is structured as follows: Sec-
tion II reviews SoTA approaches in LCEC. Section III introduces
MIAS-LCEC, our proposed online, target-free LCEC algorithm.
Section IV presents experimental results and compares our
method with SoTA methods. Finally, in Section V, we conclude
this article and discuss potential future research directions.

II. RELATED WORK

Existing LCEC approaches are primarily categorized as either
target-based or target-free based on whether the algorithm re-
quires pre-defined features from both RGB images and LiDAR
point clouds. The following two subsections discuss these two
types of algorithms in detail.

A. Target-Based Approaches

The SoTA target-based LCEC approaches [35], [36], [37],
[38], [39], [40] are typically offline, relying on customized cal-
ibration targets (typically checkerboards). These targets enable
the automatic detection of correspondences, as they provide dis-
tinct, recognizable features that can be easily identified in both
LiDAR and camera data. For example, the study [35] performs
extrinsic calibration by extracting corner points of a printed
checkerboard from LiDAR point clouds and RGB images. It
then optimizes the calibration result by formulating a RANSAC-
based PnP problem, which minimizes the Euclidean distances
between the corresponding corners. In the recent study [39],
both intrinsic and extrinsic parameters are accurately estimated
using a specially designed calibration target, which incorporates
a checkerboard pattern and four specifically placed holes. While
these methods achieve high calibration accuracy, their reliance
on customized targets and the need for additional setup render
it impractical for scenarios where robots operate in dynamically
changing environments. Consequently, we introduce a fully
target-free approach that provides greater applicability and flex-
ibility, eliminating the need for specialized calibration targets.
This approach enables robots to rapidly obtain high-precision
extrinsic parameters anytime and anywhere.

B. Target-Free Approaches

To improve the environmental adaptability of LCEC, previous
studies [41], [42], [43] have shifted from relying on specific

targets to extracting informative visual features directly from the
environment. In early attempts, researchers manually identified
cross-modal correspondences and conducted LCEC using the
PnP pose estimation algorithm [41], [42]. Nevertheless, this
manual LCEC process is tedious and prone to errors introduced
by the manually selected correspondences [18].

Afterwards, traditional line/edge feature-based automatic
LCEC approaches emerged. In studies such as [19], [22], LiDAR
point intensities are first projected into the camera perspective,
thereby generating a virtual image, namely an LIP image. Edges
are then extracted from both the LIP and RGB images. By
matching these cross-modal edges, the relative pose between
the two sensors can be determined. Similarly, research by [44],
[45] optimizes extrinsic calibration by maximizing the mutual
information (MI) between LIP and RGB images. To address
occlusion issues in [44], [45], the study of HKU-Mars [21]
employs a voxelization method to detect and extract 3D lines
from the point cloud, achieving high accuracy in scenarios
with rich 3D line features. While effective in specific scenarios
with abundant features, these traditional methods heavily rely
on well-distributed line/edge features, which can compromise
calibration robustness. Moreover, the use of low-level image
processing algorithms, such as Gaussian blur and the Canny
operator, can introduce errors in edge detection, potentially
fragmenting global lines and thus reducing overall calibration
accuracy.

Advances in deep learning techniques have driven significant
exploration into enhancing traditional line/edge feature-based
algorithms. In [18], edge detection with Transformer (EDTER)
[46], a deep neural network, is utilized to improve the accu-
racy of 2D edge detection in RGB images. Additionally, a
supervoxel-based 3D line detection method was designed to
detect global line features from 3D point clouds, improving the
line-based method proposed in [21]. Despite its impressive per-
formance, this approach still heavily relies on specific scenarios
with abundant properly-distributed lines, ultimately limiting its
applicability.

To overcome this limitation, several end-to-end deep learning-
based algorithms [47], [48], [49] have been developed. RegNet
[47], the first convolutional neural network, developed specif-
ically for extrinsic parameter estimation, is trained by mini-
mizing a loss function representing the distance between pre-
dicted and ground-truth parameters. However, RegNet requires
retraining when sensor intrinsic parameters change. CalibNet
[48] improves RegNet by maximizing geometric and photo-
metric consistency between point clouds and images, thereby
regressing extrinsic parameters implicitly. Another end-to-end
network, LCCNet [49], introduces a cross-attention module to
measure the similarity between point clouds and images. While
these methods have demonstrated effectiveness on large-scale
datasets like KITTI [50], which primarily focuses on urban
driving scenarios, their performance has not been extensively
validated on other types of real-world datasets. Furthermore,
their dependence on pre-defined sensor configurations (both
LiDAR and camera) poses implementation challenges.

Inspired by end-to-end keypoint detection and matching neu-
ral networks, a recent study [24] introduced Direct Visual
LiDAR Calibration (DVL), a novel point-based method that
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utilizes SuperGlue [51] to establish direct 3D-2D correspon-
dences between LiDAR and camera data. Additionally, this
study refines the estimated extrinsic matrix through direct
LiDAR-camera registration by minimizing the normalized in-
formation distance, a mutual information-based cross-modal
distance measurement loss. However, an oversight in aligning
the FoV between the LiDAR and camera leads to the presence of
numerous redundant points of interest within the LiDAR point
clouds, adversely affecting the overall stability of the LCEC
process. Therefore, in this article, we improve the LiDAR point
intensity projection strategy to generate LIP images that are more
similar to the RGB images.

To further improve the robustness of cross-modal feature
matching for LCEC, several studies [13], [26], [27], [28], [29],
[30] have resorted to semantic segmentation techniques. For
instance, in [28], parking vehicles are first detected and then used
to register point clouds with images. The study [13] maximizes
the overlapping area of vehicles as represented in both point
clouds and images. Similarly, [27] accomplishes LiDAR and
camera registration by aligning road lanes and poles, while [30]
employs stop signs as calibration primitives and refines results
over time using a Kalman filter. Moreover, [29] investigates
the consistency of segmented edges between point clouds and
images, and [26] introduces an automatic registration method
based on pole matching. However, as discussed earlier, domain
shift and annotation inconsistency issues often hinder these
algorithms from effectively generalizing to unseen, new sce-
narios. In this work, we take a pioneering step by leveraging
SoTA LVMs to extract more informative features from both
LIP and RGB images. Furthermore, we develop a more robust
cross-modal feature matching strategy, which makes the LCEC
process fully target-free, overcoming the previous reliance on
specific semantic targets. By integrating these advancements, we
aim to enhance the accuracy and robustness of LCEC algorithms,
enabling them to perform effectively in diverse and challenging
real-world environments.

III. METHODOLOGY

A. Algorithm Overview

Our proposed online, target-free LCEC algorithm MIAS-
LCEC, as depicted in Fig. 2, employs a novel coarse-to-fine
pipeline. A virtual camera projects LiDAR point intensities into
the camera perspective. Both the resulting LIP image and the
RGB image are processed using MobileSAM, a SoTA LVM
for image segmentation. Sufficient and reliable correspondences
identified by our C3M strategy are then used as inputs for a PnP
solver to estimate the extrinsic matrix C

LT .
Previous studies [24], [52] typically set up the virtual camera

with a relative transformation V
LT from LiDAR as follows:

V
LT =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝0 −1 0

0 0 −1

1 0 0

⎞
⎟⎠

︸ ︷︷ ︸
V
LR

⎛
⎜⎝0

0

0

⎞
⎟⎠

︸ ︷︷ ︸
V
L t

0� 1

⎞
⎟⎟⎟⎟⎟⎟⎠ ∈ SE(3), (3)

C3M

LVM

RGB Image

LiDAR Point Cloud

LVM

PnP 
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LIP Image
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LiDAR

Cross-Modal Mask Matching Result

Virtual 
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Fig. 2. The pipeline of our proposed online, target-free LCEC algorithm.

thereby generating an LIP image IL ∈ RH×W×1 to formulate
the LCEC problem as a 2D feature matching problem, where H
andW denote its height and width, respectively. Considering the
image distortion introduced by different perspective views, (3)
constrains the sensor setup to a captious relative transformation.
Therefore, we propose a novel strategy to iteratively refine the
virtual camera pose until the LIP image resembles one taken
from the actual camera’s perspective view. This iterative process
can be expressed as follows:

lim
k→+∞

C
V T k = lim

k→+∞
(VLT k)

−1C
LT ≈

(
I 0

0� 1

)
, (4)

where the subscript k denotes the k-th iteration, VLT k represents
the transformation from LiDAR to the virtual camera, and I
denotes the identity matrix.

Using the LIP image captured in each iteration and our
proposed C3M in Section III-B, we can generate two sets
Pk = {pk,1, . . . ,pk,Nk

} and PL
k = {pL

k,1, . . . ,p
L
k,Nk

}, which
store 2D pixels in the RGB image captured by camera and
the corresponding 3D LiDAR points, respectively. The extrinsic
matrix C

L T̂ k can then be effectively computed by minimizing
the mean reprojection error as follows:

C
L T̂ k = argmin

C
LT k,i

1

Nk

Nk∑
n=1

∥∥K(CLRk,ip
L
k,n + C

L tk,i)− pk,n

∥∥
2︸ ︷︷ ︸

εk

,

(5)

where C
LT k,i =

(
C
LRk,i

C
L tk,i

0� 1

)
∈ SE(3) denotes the i-th PnP

solution obtained using a selected subset of correspondences
from Pk and PL

k , and εk represents the mean reprojection error
with respect to C

LT k,i.
Our MIAS-LCEC algorithm updates V

LT k+1 with C
L T̂ k. Ac-

cording to (4), V
LT k+1 = C

L T̂ k ≈ C
LT as the iterative process

converges, minimizing the calibration error to the greatest ex-
tent. In practical applications, to optimize the trade-off between
accuracy and efficiency, we terminate the iterative process when
εk+1 > εk, and select C

L T̂ k from the k-th iteration as the final
calibration result, namely C

LT
∗.
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Algorithm 1: Cross-Modal Mask Matching.
Require:
Cross-modal masks, obtained from the LIP and RGB
images.

Stage 1 (Reliable sparse matching):
(1) Construct the instance matching cost matrix M I using
(6).

(2) Select matched instances with low costs from M I as
reliable matches.

(3) Construct MC using (7) and match corner points.
(4) Estimate sRA and tA using (9)–(12).
Stage 2 (Dense mask matching):
(1) Update all masks in the LIP image using sRA and tA.
(2) Update M I with the updated masks to obtain dense
instance matching results.

(3) For each pair of matched instances, update their MC

using (7) to determine corner point correspondences.
(4) Aggregate all corner point correspondences to form the
sets P and PL.

b

a c

d

b

a c

d

a b c

d

Fig. 3. An example of two-stage, coarse-to-fine cross-modal mask matching
result: (a)-(d) illustrate four examples of instance matching and corner point
matching results. Potential errors produced by the LVM are greatly minimized
through our strict match selection criterion.

B. Cross-Modal Mask Matching

In this article, we adopt a two-stage strategy to realize cross-
modal mask matching, as detailed in Algorithm 1. Each stage
consists of sequential coarse instance matching and fine-grained
corner point matching. The first stage yields reliable yet sparse
matches, from which we derive the parameters for an affine
transformation to update the masks within the LIP image. In the
second stage, we achieve dense mask matching by propagating
the obtained reliable reference matches to the target masks.
These dense matches are finally utilized as inputs for the PnP
solver to obtain C

LT .
As shown in Fig. 3, our developed C3M strategy significantly

minimizes potential matching errors produced by the LVM,
primarily due to the strict match selection criterion. The corner
points along the contours of masks detected within the LIP
image and the RGB image using MobileSAM are represented
by two sets: CV = {cV1 , . . . , cVm} and CC = {cC1 , . . . , cCm}, re-
spectively. An instance (bounding box), utilized to precisely
fit around each mask, is centrally positioned at oV,C and has

Fig. 4. Upon matching the target masks Tv and Tc, an affine transformation
estimated from a pair of reference masks Rv and Rc, is used to update the
mask in the LIP image, so as to more accurately reflect the actual matching
relationship.

a dimension of hV,C × wV,C pixels. To determine optimum
instance matches, we construct a cost matrix M I , where the
element at x = (i; j), namely:

M I(x) =
1

4

(∣∣wC − wV
∣∣

wC + wV
+

∣∣hC − hV
∣∣

hC + hV

+ 2

(
1− exp(−

∥∥∥ôV − oC
∥∥∥
2

hC + hV + wC + wV
)

))
∈ [0, 1], (6)

denotes the matching cost between the i-th instance from the LIP
image and the j-th instance from the RGB image. ôV is initially
set as oV during the sparse matching phase and subsequently
updated using the above-mentioned affine transformation prior
to the dense matching phase, as illustrated in Fig. 4, so as to
minimize the discrepancies arising from the differing perspec-
tives between LiDAR and camera. A strict criterion is applied to
achieve sparse yet reliable matching. Matches with the lowest
costs in both horizontal and vertical directions are determined
as the optimum coarse instance matches.

Subsequently, we determine corner point correspondences
within the matched instances. Similarly, a cost matrix MC is
constructed, where the element at y = (r; s), namely:

MC(y) =
‖(ĉV − ôV )− (cC − oC)‖2

‖(ĉV − ôV )‖2 + ‖(cC − oC)‖2
∈ [0, 1], (7)

denotes the matching cost between the r-th corner point of a
mask in the LIP image and the s-th corner point of a mask in the
RGB image. ĉV is initialized as cV during the sparse matching
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phase and updated using the same affine transformation prior
to the dense matching phase. Correspondences with the lowest
costs both horizontally and vertically are also determined to be
optimum corner point matching results. Nevertheless, the first
stage is considerably critical and cannot often provide the PnP
solver with sufficient inputs.

Therefore, we apply an affine transformation to the masks
within the LIP image to adjust oV and cV , as follows:{

ĉV = sRAcV + tA

ôV = sRAoV + tA
, (8)

where RA ∈ SO(2) represents the rotation matrix, tA denotes
the translation vector, and s represents the scaling factor. Given
the critical nature of our designed sparse matching strategy,
we can assume that after the affine transformation, any points
within a given mask in the LIP image perfectly align with the
corresponding points from the RGB image, and thus, ĉV = cC

and ôV = oC . In this case, RA can be obtained using the
following expression:

RA =

(
cos θ − sin θ

sin θ cos θ

)
, (9)

where

θ=
1

N

N∑
i=1

(
arctan

1�
y (c

V
i − oV )

1�
x (c

V
i − oV )

− arctan
1�
y (c

C
i − oC)

1�
x (c

C
i − oC)

)
(10)

is the angle between the vectors originating from the mask
centers and pointing to their respective matched corner points.
s can then be expressed as follows:

s =
wChC

wV hV
, (11)

which represents the ratio between the areas of the bounding
boxes associated with the RGB image and the LIP image.
Finally, according to (8), tA can be obtained as follows:

tA = oC − sRAoV . (12)

The remainder of this subsection delves into the relationship
between a given pair of matched corner points within the
reference and target masks, demonstrating the feasibility and
reasonableness of propagating sparse, reliable mask matches.

Given two 3D LiDAR points qV (reference) and pV (target)
in the virtual camera coordinate system, their correspondences,
qC and pC , in the actual camera coordinate system can be
established through the following transformations:

qC = C
V RqV + C

V t, (13)

pC = C
V RpV + C

V t. (14)

q̃v,c and p̃v,c, the homogeneous coordinates of the correspond-
ing 2D pixels of qV,C and pV,C in LIP and RGB images, can be
obtained as follows:{

p̃v = K
(pV )�1z

pV , p̃c =
K

(pC)�1z
pC ,

q̃v = K
(qV )�1z

qV , q̃c =
K

(qC)�1z
qC .

(15)

Plugging (15) into (13) results in the affine transformation from
q̃v to q̃c as follows:

q̃c =
(qV )�1z

(qC)�1z
K(CV R)K−1

︸ ︷︷ ︸
A

q̃v +
K

(qC)�1z

C
V t︸ ︷︷ ︸

b

. (16)

where A and b represent an affine transformation from qv to qc.
Combining (14) and (13) results in the following expression:

pC = qC + C
V R(pV − qV ). (17)

Plugging (15) into (17) results in the following expression:

p̃c =
(qC)�1z

(pC)�1z
q̃c

+
(pV )�1z

(pC)�1z
K(CV R)K−1(p̃v −

(qV )�1z

(pV )�1z
q̃v)

=
(pV )�1z

(pC)�1z

(qC)�1z

(qV )�1z

(qV )�1z

(qC)�1z
K(CV R)K−1

︸ ︷︷ ︸
A

p̃v

+
(qC)�1z

(pC)�1z

(
q̃c −

(qV )�1z

(qC)�1z
K(CV R)K−1q̃v

)
︸ ︷︷ ︸

b

. (18)

When pV and qV are close in depth, namely (pV )�1z ≈
(pC)�1z ≈ (qV )�1z ≈ (qC)�1z , (18) can be rewritten as fol-
lows:

p̃c ≈ Ap̃v + b. (19)

(16) and (19) indicate that q̃v,c and p̃v,c can share the same
affine transformation when qV,C and pV,C are close in depth. In
practice, we use the following affine transformation:(

p̃c q̃c

)
=

(
sRA tA

0� 1

)(
p̃v q̃v

)
. (20)

Therefore, the affine transformation of the target mask can be
approximated by sRA and tA, which are derived from the
reference masks that are spatially close to the target mask.

In the first stage of the C3M process, reference masks are
not yet identified. Therefore, sRA and tA are not consid-
ered when constructing M I and MC , and are initialized as

sRA =
(
1 0

0 1

)
and tA = (0; 0). In the second stage, they are

determined using (9)-(12), based on reliable reference masks
identified in the first stage. The entire C3M process is efficient
because it primarily focuses on 2D affine transformation, rather
than complex 3D point cloud registration.

IV. EXPERIMENT

A. Experimental Setup

Our experimental setup, as shown in Fig. 5, consisting of
two solid-state Livox LiDARs (Mid-70 and Mid-360) from
DJI and an MV-SUA202GC global-shutter CMOS camera from
MindVision, is used for cross-modal data collection. The Mid-70
and Mid-360 LiDARs both operate at a point rate of 200,000
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Fig. 5. Our experimental setup, where two solid-state Livox LiDARs and one
MindVision camera are utilized for data acquisition.

points/s. However, the Mid-70 LiDAR captures dual returns,
while the Mid-360 LiDAR captures only the first return. The
RGB image resolution is 1,200×800 pixels. The camera’s intrin-
sic parameters are determined through offline calibration prior
to the experiments and are presumed to remain constant.

We compare our method with four SoTA target-free LCEC
approaches: CRLF [27], UMich [45], HKU-Mars [21] and
DVL [24], on two real-world datasets, MIAS-LCEC-TF70 and
MIAS-LCEC-TF360. Additionally, to validate the effectiveness
of our method in scenarios where targets are present, we also
conduct comparisons with a classical offline target-based LCEC
approach introduced in [35] on the MIAS-LCEC-CB70 dataset.

Our algorithm was implemented on an Intel i7-14700K CPU
and an NVIDIA RTX4070Ti Super GPU. The entire process,
including data preprocessing, C3M, and extrinsic parameters
optimization, takes approximately 15 to 70 seconds.

B. Datasets

We have created the following three real-world datasets:
MIAS-LCEC-TF70 (target-free), MIAS-LCEC-CB70 (target-
based), and MIAS-LCEC-TF360 (target-free), which are now
publicly available for researchers to evaluate the performance of
LCEC approaches:
� MIAS-LCEC-TF70 is a diverse and challenging dataset

that contains 60 pairs of 4D point clouds (including spatial
coordinates with intensity data) and RGB images, col-
lected using a Livox Mid-70 LiDAR and a MindVision
SUA202GC camera, from a variety of indoor and outdoor
environments, under various scenarios as well as different
weather and illumination conditions. We divide this dataset
into six subsets: residential community, urban freeway,
building, challenging weather, indoor, and challenging
illumination, to comprehensively evaluate the algorithm
performance.

� MIAS-LCEC-CB70 contains 15 pairs of 4D point clouds
and RGB images, all collected in our laboratory using
a Livox Mid-70 LiDAR and a MindVision SUA202GC
camera, with yaw angles ranging from −30◦ to +30◦, and
the distances between the sensors and a calibration checker-
board pattern ranging from 3 m to 5 m. The checkerboard
pattern comprises alternating white and black squares of
equal size (8 cm × 8 cm).

Fig. 6. Comparison of corner point detection between LiDAR point cloud
and RGB image: (a) possible detection results in the LiDAR point cloud; (b)
the detection result in the RGB image. The blue point in (b) has four possible
matches in (a).

� MIAS-LCEC-TF360 contains 12 pairs of 4D point clouds
and RGB images, collected using a Livox Mid-360 Li-
DAR and a MindVision SUA202GC camera from both
indoor and outdoor environments. Since the Livox Mid-
360 LiDAR has a scanning range of 360◦, it produces a
sparser point cloud compared to that generated by the Livox
Mid-70 LiDAR. Additionally, the significant difference
in the FoV between this type of LiDAR and the camera
results in only a small overlap in the collected data. Con-
sequently, this dataset is particularly well-suited for evalu-
ating the adaptability of algorithms to challenging scenar-
ios characterized by sparse point clouds and limited data
overlap.

C. Evaluation Metrics

In our experiments, the Euler angle error, with the following
expression:

er = ‖r∗ − r‖2 , (21)

where r∗ and r represent the estimated and ground-truth Euler
angle vectors, computed from the rotation matrices C

LR
∗

and
C
LR, respectively, and the translation error, with the following
expression1:

et =
∥∥∥−(CLR

∗)−1t∗ + C
LR

−1
t
∥∥∥
2
, (22)

1The translation from LiDAR pose to camera pose is −C
LR

−1
t when (1) is

used to depict the point translation.
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TABLE I
QUANTITATIVE COMPARISONS WITH SOTA TARGET-FREE LCEC APPROACHES ON THE MIAS-LCEC-TF70 DATASET

where t∗ and t denote the estimated and ground-truth translation
vectors, respectively, are used to quantify the performance of
target-free LCEC approaches.

Additionally, we use the following reprojection error

ε =
1

M

M∑
i=1

∥∥K(CLR
∗pL

i + C
Lt

∗)− p̃i

∥∥
2
. (23)

between 3D LiDAR points and their corresponding 2D image
pixels to quantify the performance of LCEC algorithms when
using targets.

As illustrated in Fig. 6, we observe that LiDAR scanning
near textural and geometric discontinuities typically exhibits
inherent errors, resulting in a reprojection error of around one
pixel. Therefore, in our experiments, we consider results with a
reprojection error of less than two pixels to be satisfactory.

D. Comparisons with State-of-the-Art Methods

Quantitative comparisons with SoTA approaches on the
MIAS-LCEC-TF70 and MIAS-LCEC-TF360 datasets are pre-
sented in Tables I and II. Additionally, qualitative results for
these datasets are illustrated in Figs. 7, 8, and 9. It is important
to note that the results from the first iteration of MIAS-LCEC are
reported here because the accuracy achieved is already higher
than that of existing SoTA approaches.

The results shown in Table I suggest that our method out-
performs all other SoTA approaches on a total of 60 scenar-
ios, all captured using a Livox Mid-70 LiDAR. Specifically,
MIAS-LCEC reduces er by around 30–93% and decreases et
by 39–99%, compared to existing SoTA algorithms. We at-
tribute these performance improvements to the coarse-to-fine
correspondence matching pipeline based on LVMs, which sets
strict criteria for reliable sparse correspondence selection and
propagates these matches to generate dense correspondences,
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Riverside
Residential community

with moving pedestrian
Urban freeways Dark underground 

parking garage

Parking lot on 

a rainy day
Park on a rainy day

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 7. Qualitative comparisons with SoTA target-free LCEC approaches on the MIAS-LCEC-TF70 dataset: (a)-(b) RGB images and their segmentation results;
(c)-(d) LIP images and their segmentation results; (e)-(g) experimental results achieved using MIAS-LCEC (ours), HKU-Mars, and DVL, shown by merging LIP
and RGB images, where significantly improved regions are shown with red dashed boxes.

TABLE II
QUANTITATIVE COMPARISON OF OUR PROPOSED

MIAS-LCEC APPROACH WITH OTHER SOTA ONLINE,
TARGET-FREE APPROACHES ON THE MIAS-LCEC-TF360

DATASET, WHERE THE BEST RESULTS ARE SHOWN IN BOLD TYPE.

thereby improving the quality of the PnP solutions. It can also
be observed that MIAS-LCEC achieves lower mean er and et
values than all other approaches across the total six subsets.

Gray-Scale Image 

Captured by Camera
Our LIP Image

LIP Image 

Obtained by DVL

Fig. 8. Qualitative comparison between our proposed MIAS-LCEC and DVL
in terms of LIP image generation on the MIAS-LCEC-TF70 dataset.

Our method dramatically outperforms CRLF, UMich, and HKU-
Mars and is slightly better than DVL in scenarios with low noise
and abundant features, while it performs significantly better than
all methods in challenging conditions, particularly under poor il-
lumination and adverse weather, or when few geometric features
are detectable. This impressive performance can be attributed to
MobileSAM, a powerful LVM, capable of learning informative,

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 26,2025 at 08:20:43 UTC from IEEE Xplore.  Restrictions apply. 



3540 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 10, NO. 5, MAY 2025

Fig. 9. Qualitative comparison between our proposed MIAS-LCEC and DVL
in terms of LIP image generation on the MIAS-LCEC-TF360 dataset.

general-purpose deep features for robust image segmentation.
Surprisingly, as observed in Fig. 7, MobileSAM can effectively
segment both RGB and LIP images captured in challenging
conditions, such as dark underground parking garages or during
rainy days, where the objects are even unrecognizable to human
observers.

Additionally, the results on the MIAS-LCEC-TF360 dataset
somewhat exceed our expectations. From Table II, it is evident
that while the other approaches achieve poor performance on this
dataset, MIAS-LCEC demonstrates acceptable performance,
indicating strong adaptability to more challenging scenarios,
with narrow overlapping areas between LIP and RGB images.
This performance improvement is primarily attributed to our
developed LIP image generation strategy, which incorporates
several image pre-processing techniques in our practical im-
plementation to refine the LIP images and align the FoVs be-
tween the two sensors as closely as possible. As illustrated in
Figs. 8 and 9, the LIP image generated by DVL contains nu-
merous holes and has a significantly different FoV compared to
the RGB image, resulting in unexpected false correspondence
matches, which can deteriorate the algorithm’s efficiency and
robustness. In contrast, MIAS-LCEC can generate LIP images
that look as if taken from the same perspective to the actual
camera, thus improving the performance of cross-modal mask
matching.

E. Comparison with An Offline, Target-Based Approach

This subsection presents additional experimental results on
the MIAS-LCEC-CB70 dataset, comparing our approach with
ACSC [35], a SoTA offline, target-based LCEC algorithm, when
calibration targets are available. The checkerboard corner points
in both the LIP and RGB images are used as ground-truth
correspondences. In contrast to ACSC, which employs ground-
truth correspondences to estimate the extrinsic parameters, our
approach conducts online, target-free LCEC. The reprojection
errors of these correspondences are computed to quantify the
performance of both algorithms. As illustrated in Fig. 10, the
visualization of LCEC calibration results through LiDAR and
camera data fusion suggests the high accuracy of our approach.
Furthermore, as shown in Table III, while MIAS-LCEC achieves
satisfactory results, its performance is slightly inferior to that of
ACSC. This observation is within our expectations, as ACSC

Fig. 10. Visualization of LCEC calibration results through LiDAR and camera
data fusion: (a) fusion of LIP and RGB images; (b) LiDAR point cloud partially
rendered by color.

TABLE III
COMPARISON OF REPROJECTION ERRORS BETWEEN OFFLINE CALIBRATION AND

OUR PROPOSED MIAS-LCEC APPROACH ON THE MIAS-LCEC-CB70 DATASET.

Fig. 11. Performance of MIAS-LCEC with increasing iterations on the MIAS-
LCEC-TF70 dataset.

directly minimizes the mean reprojection error of the ground-
truth correspondences to determine extrinsic parameters. In
contrast, our method relies on distinguishable and matchable
masks present in both modalities.

F. LCEC Performance with Increasing Iterations

Fig. 11 illustrates the accuracy of our algorithm with respect
to an increasing number of iterations. It is evident that (1) after
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the first iteration, our approach attains satisfactory accuracy,
and (2) after the third iteration, its performance stabilizes and
remains relatively consistent (the values of er and et decrease
by approximately 26% and 11%, respectively, from the first to
the sixth iterations). Therefore, we contend that a single itera-
tion suffices for our MIAS-LCEC approach, striking a balance
between accuracy and efficiency. However, additional iterations
can certainly be considered when computational resources are
abundant.

V. CONCLUSION

This article introduced MIAS-LCEC, a fully online, target-
free LiDAR-camera extrinsic calibration approach, developed
based on a state-of-the-art large vision model. Compared to
prior arts, our approach is more capable of matching cross-modal
features and outperforms existing state-of-the-art algorithms. To
benefit the robotic community, we also designed a calibration
toolbox with an interactive visualization interface based on our
developed approach. Extensive experiments were conducted on
three real-world datasets to comprehensively evaluate the perfor-
mance of MIAS-LCEC. The experimental results demonstrate
that (1) MIAS-LCEC achieves robust and accurate LiDAR-
camera extrinsic calibration without the need for any targets,
(2) it demonstrates high adaptability to diverse challenging
scenarios by introducing a virtual camera with iterative pose
updates to generate more accurate LiDAR intensity projections,
and (3) the SoTA image segmentation LVM is successfully
applied for this specific task by detecting distinguishable and
matchable masks across different modalities. While achieving
high accuracy and robustness, the real-time performance of our
algorithm still requires improvement, a task we will address in
future work.
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