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RoadFormer+: Delivering RGB-X Scene Parsing
Through Scale-Aware Information Decoupling
and Advanced Heterogeneous Feature Fusion

Jianxin Huang ", Jiahang Li
Qijun Chen

Abstract—Task-specific data-fusion networks have marked con-
siderable achievements in urban scene parsing. Among these net-
works, our recently proposed RoadFormer successfully extracts
heterogeneous features from RGB images and surface normal maps
and fuses these features through attention mechanisms, demon-
strating compelling efficacy in RGB-Normal road scene parsing.
However, its performance significantly deteriorates when handling
other types/sources of data or performing more universal, all-
category scene parsing tasks. To overcome these limitations, this
study introduces RoadFormer+, an efficient, robust, and adapt-
able model capable of effectively fusing RGB-X data, where “X”
represents additional types/modalities of data such as depth, ther-
mal, surface normal, and polarization. Specifically, we propose a
novel hybrid feature decoupling encoder to extract heterogeneous
features and decouple them into global and local components.
These decoupled features are then fused through a dual-branch
multi-scale heterogeneous feature fusion block, which employs
parallel Transformer attentions and convolutional neural network
modules to merge multi-scale features across different scales and
receptive fields. The fused features are subsequently fed into a
decoder to generate the final semantic predictions. Notably, our
proposed RoadFormer+ ranks first on the KITTI Road benchmark
and achieves state-of-the-art performance in mean intersection
over union on the Cityscapes, MFNet, FMB, and ZJU datasets.
Moreover, it reduces the number of learnable parameters by 65 %
compared to RoadFormer. Our source code is publicly available at
mias.group/RoadFormerPlus.
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1. INTRODUCTION

CENE parsing is crucial for the safety of autonomous driv-
S ing [1]. With the widespread adoption of deep learning tech-
niques, convolutional neural networks (CNNs) and Transform-
ers have demonstrated significant performance improvements
over traditional geometry-based models in various image seg-
mentation tasks [2], [3], [4]. However, single-modal networks
that rely solely on RGB images show limitations in handling
challenging conditions such as poor illumination and adverse
weather [5], [6]. To tackle these problems, subsequent research
has explored the integration of useful information provided by
additional data modalities. Depth or surface normal information
has been utilized to identify spatially continuous regions [7],
while thermal images have been employed to enhance object
recognition robustness under poor lighting conditions [8]. Fur-
thermore, polarization information has been used to improve
segmentation performance for transparent and highly reflective
objects [9]. Our recently proposed RoadFormer [1] effectively
extracts heterogeneous features from RGB images and surface
normal information and fuses these features for robust urban
scene parsing, demonstrating notable efficacy in freespace and
road defect detection. However, RoadFormer still has several
limitations, especially when handling other types/sources of
data. Moreover, the large quantity of parameters leads to con-
siderable hardware resource consumption, thus limiting its de-
ployment on terminal devices.

Most existing data-fusion networks use symmetric duplex
encoders to extract heterogeneous features from multiple data
sources and fuse them to provide a more comprehensive under-
standing of the environment [7], [10], [11]. However, while prior
arts [1], [7], [12] have been developed to capture more discrim-
inative features using these weight-separating duplex encoders,
directly fusing these features may produce ambiguous features,
thus negatively impairing the performance of scene parsing [13].
Additionally, the symmetric models with extensive parameters
require more hardware resources for training, particularly when
compared to networks that rely solely on RGB images [14].
Therefore, exploring an efficient and effective heterogeneous
feature encoding strategy remains an under-explored research
area that deserves more attention.

In addition to the heterogeneous feature extraction strat-
egy, the performance of a data-fusion network also depends
on the manner in which these features are fused. To address
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Fig. 1. An overview of our proposed RoadFormer+ architecture.

this issue, recent works [1], [12], [14], [15] employ learnable
feature fusion approaches, which significantly outperform tra-
ditional, non-discriminative fusion methods that rely solely on
element-wise concatenation or summation [5], [7]. For example,
RoadFormer [1] adopts a Transformer-based approach to effec-
tively capture long-range dependencies within heterogeneous
features. On the other hand, RDFNet [16] employs CNN-based
modules to process multi-scale features, effectively extracting
local spatial cues, such as edges and textures, within a relatively
small receptive field. However, these methods typically employ
single-branch feature fusion blocks, where features extracted
from RGB images and additional data types (referred to as “X”
data) are fused using convolutional layers or attention mech-
anisms. Such single-branch feature fusion strategies may not
always effectively encode both local and global contexts simul-
taneously, limiting their capacity to fully exploit the advantages
of multi-modal/source data fusion. Considering Transformers’
remarkable capability in modeling long-range dependencies
and CNNs’ robustness in local feature extraction [13], further
research into combining capabilities of CNNs’ local feature
integration and Transformer’s global representation modeling
through a dual-branch fusion design to enhance scene parsing is
highly warranted.

Moreover, while task-specific networks such as RoadFormer
demonstrate impressive performance in RGB-Normal road
scene parsing, their applicability to more universal urban scene
parsing tasks and their effectiveness in handling diverse data
types remain limited. For instance, RoadFormer exhibits a
significant performance drop on comprehensive scene parsing
datasets, such as the KITTI Semantics [17] and Cityscapes [18],
compared to existing state-of-the-art (SoTA) RGB-D/Normal
methods. Additionally, it performs suboptimally when process-
ing RGB-Thermal/Polarization data [8], [9]. It is urged to design
a universal RGB-X data-fusion network that performs robustly
across multiple data sources for urban scene parsing.

To address the aforementioned limitations, we first design
a more efficient hybrid feature decoupling encoder (HFDE).
Given the correlation between RGB images and their corre-
sponding X data, we first replace the duplex encoder with a
weight-sharing backbone to reduce the number of learnable
parameters. We then employ an asymmetric architecture that
independently utilizes two global feature enhancers (GFEs)
and two local feature extractors (LFEs) to decouple heteroge-
neous features, effectively modeling their inherent differences at

various scales. Subsequently, we introduce a robust dual-branch
multi-scale heterogeneous feature fusion (MHFF) block to fuse
heterogeneous features in parallel, ensuring a comprehensive
integration of global and local features. The MHFF block utilizes
Transformer-based and CNN-based modules to parallelly fuse
and calibrate multi-scale features. Our proposed RoadFormer+,
as illustrated in Fig. 1, an upgraded version of RoadFormer, with
all these innovative components incorporated, demonstrates su-
perior performance over RoadFormer across four RGB-Normal
scene parsing datasets, while reducing the learnable param-
eters by around 65%. Furthermore, RoadFormer+ achieves
SoTA performance in RGB-Normal, RGB-Thermal, and RGB-
Polarization scene parsing, demonstrating its exceptional appli-
cability across a broad range of RGB-X data-fusion scenarios.

Our contributions can be summarized as follows:

® We introduce HFDE, which consists of a weight-sharing
backbone and two pairs of independent GFEs and LFEs,
to extract heterogeneous features and effectively capture
both the correlation and inherent differences between RGB
images and X data.

e We design a dual-branch MHFF block to capture both
global and local features simultaneously. It seamlessly
integrates Transformer-based and CNN-based modules, so
as to utilize different receptive fields to achieve advanced
heterogeneous feature fusion.

® We propose RoadFormer+, a novel urban scene parsing ap-
proach with fewer parameters compared with RoadFormer,
which achieves SoTA performance across multiple RGB-X
scene parsing datasets.

The remainder of this article is organized as follows: In
Section II, we review related works on urban scene parsing.
In Section III, we introduce our proposed RoadFormer+. In
Section [V, we present quantitative and qualitative experimental
results and their corresponding analyses. Finally, in Section V,
we conclude this work and discuss potential future directions.

II. RELATED WORK

A. Single-Modal Scene Parsing

Since the introduction of FCN [19], various CNN-based
scene parsing networks have been developed. For instance, PSP-
Net [20] uses pyramid pooling to capture semantic information at
multiple scales. DeepLabV3+ [21] employs atrous convolutions
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with different dilation rates to enrich the contextual feature
encoding across scales. Additionally, MobileNetV?2 [22] adopts
lighter architectures based on depth-wise separable convolutions
to reduce model parameters and computational demands. In
these CNN-based networks, each convolutional kernel processes
only a local region of the image at a time. This local receptive
field design enables CNNs to excel at extracting local features,
such as edges and textures [23].

Transformers have gained prominence in scene parsing tasks
due to their exceptional global aggregation capabilities com-
pared to CNNs [24]. The attention mechanisms within Trans-
formers allow each token to interact with all others simultane-
ously [25]. These interactions help achieve a comprehensive un-
derstanding of the correlation between each token and the global
context, thereby better extracting global features. Segmentation
Transformer (SETR) [26], pioneering the use of a Transformer-
based architecture for scene parsing, adopts a method similar
to the vision Transformer (ViT) [27] by tokenizing images
into patches and processing them through Transformer blocks
to enhance the global context modeling in the encoder. Fur-
thermore, the MaskFormer series [28], [29] introduces a novel
Transformer-based decoding paradigm by segmenting images
into a set of masks, each associated with a class prediction. This
mask classification paradigm, previously validated in [1], has
been effectively incorporated into our enhanced RoadFormer+
design, further optimizing its performance.

B. Data-Fusion Scene Parsing

Scene parsing networks that rely solely on RGB images have
been found to be highly sensitive to environmental factors such
as lighting and weather conditions [7]. To overcome this lim-
itation, data-fusion networks effectively utilize heterogeneous
features extracted from RGB images and additional data sources.
FuseNet [5] pioneered the incorporation of depth information
into scene parsing. It uses independent CNN encoders for RGB
and depth images and fuses their features through element-
wise summation. MFNet [8] and RTFNet [30] strike a balance
between speed and accuracy in RGB-Thermal driving scene
parsing. Inspired by [5], the SNE-RoadSeg series [7], [31] in-
corporates surface normal information into freespace detection.
These networks employ densely connected skip connections to
enhance feature decoding. Despite the improved performance
achieved by these networks, the simplistic feature fusion strate-
gies potentially restrict their capacity to fully exploit the com-
plementary information present in heterogeneous features.

To address this challenge, recent studies have employed
more advanced and learnable feature fusion strategies. Road-
Former [1] combines self-attention with channel attention to
form a novel feature synergy block that greatly enhances the
fusion of heterogeneous features. Data-fusion networks have
also garnered attention in the broader domain of scene parsing.
Recent works CMX [12] and CAINet [14] utilize various atten-
tion modules to effectively fuse and recalibrate heterogeneous
features. Additionally, SASEM [32] introduces a plug-and-play
module to enhance semantic supervision, thereby improving fea-
ture recovery capabilities. Moreover, CDDFuse [13] implements
atwo-step training strategy that integrates CNN and Transformer
blocks in parallel to fuse multi-modal medical images effec-
tively. This article delves into more robust and general-purpose
modules so as to more effectively fuse heterogeneous features.
Our proposed RoadFormer+ not only broadens its applicability
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and generalizability to a wider range of scene parsing tasks but
also significantly reduces the number of model parameters.

III. METHODOLOGY

A. Hybrid Feature Decoupling Encoder

1) Overall Feature Encoding Pipeline: Current networks
generally employ symmetric duplex encoders to extract het-
erogeneous features from multiple data sources [1], [7]. How-
ever, such dual-branch designs not only double the number of
learnable parameters in the feature encoding phase but may
also potentially lead to feature conflict [33]. To address this
issue, we propose an HFDE to improve the efficiency of het-
erogeneous feature extraction. Specifically, considering the cor-
relation between heterogeneous features [34], we first employ
a weight-sharing backbone to process the given RGB image
It ¢ RT*W>3 and its corresponding X data IX € RH*Wx3,
thereby generating multi-scale features F©* = {FJ, ... F}

and FX = {F{,...  F{}. For X data with a single channel
(such as depth, thermal, and polarization information), we repli-
cate it three times along the channel dimension to match the RGB

. sy . R,X Ex¥xc;
image’s dimensions of H x W x 3. Here, F';"" € RSi " Si
represents the features in the i-th encoding stage, where C;
and S; = 21 (i € [1,4] N Z) denote the channel and stride
numbers, respectively, and H and W denote the height and
width of the input image, respectively. Furthermore, we employ
two weight-separating GFEs and LFEs to extract global features
]-"g X and local features ]-"f’X at four spatial scales from the
heterogeneous features F X, respectively, thereby realizing
feature decoupling. Finally, ]-'g X and ]-'f’X are fed into the
MHEFF block for further feature fusion and recalibration.

2) Weight-Sharing Backbone: Large-kernel convolutions ex-
hibit considerable potential in capturing long-range dependen-
cies, owing to their expansive receptive fields, while still retain-
ing favorable inductive biases crucial for vision-specific tasks
such as scene parsing [35]. For instance, the areas surrounding
vehicles are more likely to be roads rather than buildings. In our
previous study [1], ConvNeXt [36] demonstrates superior per-
formance compared to ResNet [37] and Swin Transformer [38],
and thus, we continue to adopt it as the backbone in this study. We
also compare the performance of ConvNeXt with the recently
proposed SoTA backbone networks UniRepLLKNet [35] and
DINAT [39]. Detailed experimental results and analyses are
provided in Table X. Our backbone is constructed using two
identical, weight-sharing ConvNeXt models.

3) Global Feature Enhancer: ViT has shown exceptional
performance across various fundamental vision tasks [27], [38].
Its self-attention mechanism effectively models the global re-
ceptive field, thereby enhancing the contextual understanding
essential for recognizing large continuous areas such as roads
and sidewalks. Consequently, we utilize a GFE based on the
multi-head self-attention mechanism to further emphasize the
long-range global features. Given the robustness of the back-
bone network, we omit the positional encoding and replace the
commonly used feed-forward network layers with simple nor-
malization operations to reduce the number of model parameters.
RGB features ' and X features F X are respectively mapped to
query, value, and key matrices through convolutional layers. We
also introduce a residual connection into the attention operation.

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 26,2025 at 08:20:43 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: ROADFORMER+: DELIVERING RGB-X SCENE PARSING THROUGH SCALE-AWARE INFORMATION DECOUPLING

VR Identity

i .

Reshape QR
7

Reshape

X
Vi Identity

(b) LFFM

3159

(a) GFRM

Identity

g
Reshape

Norm

(c) FEIM

@ Element-Wise Summation ® Matrix Multiplication @ Hadamard Product @ Average Pooling © Tensor Concatenation @ GeLU @ Sigmoid

Fig. 2.
fusion module, and (c) a feature enhancement and integration module.

Our GFE module can be formulated as follows:
G; = Norm (MHSA(F;) + F;), (1)

where F; represents the i-th feature maps within F% and
FX, G, represents the i-th feature maps within ]-'g and FX,
and MHSA represents the multi-head self-attention mechanism
operation. After processing by the GFE, the enhanced global
features 7% and FJ are obtained.

4) Local Feature Extractor: Local detail features, such as
edges and corners, are crucial for accurate scene parsing. Com-
pared to Transformers, convolution operations are proficient
at extracting local features and further enhancing fine-grained
details [40]. Therefore, we propose a LFE, which incorporates an
inverted residual block from MobileNetV2 [22] to process F R
and F, specifically targeting local features. This lightweight
module strikes a balance between model parameters and accu-
racy, as demonstrated across multiple tasks [14]. Our LFE can
be formalized as follows:

L, = Clor}V (ReLU (DV\?{C??IIV (ReLU (qoqv(FJ)))) +F,,

where L; denotes the i-th feature maps within 77 and Fj*.
After processing by the LFE, we obtain the local features F%
and F5¥.

B. Multi-Scale Heterogeneous Feature Fusion Block

To further fuse and integrate global and local features, we
introduce a dual-branch MHFF block, which employs attention
mechanisms and CNN modules in parallel. An MHFF consists
of (1) a global feature recalibration module (GFRM) that utilizes
a cross-attention mechanism to recalibrate F£ and FZ, (2) a
local feature fusion module (LFFM) that utilizes convolutional
layers to fuse F f and F7, and (3) a feature enhancement
and integration module (FEIM) based on a spatial attention

An illustration of our proposed multi-scale heterogeneous feature fusion block, consisting of (a) a global feature recalibration module, (b) a local feature

mechanism to integrate heterogeneous features and generate
robust fused feature 7.

1) Global Feature Recalibration Module: Heterogeneous
global features Fff and F are generally complementary [34].
For example, road areas often appear consistent in color across
RGB images and possess uniform normal vectors and polariza-
tion properties. Therefore, one feature type can be utilized to
mitigate potential noise in its complementary feature type [12].
Additionally, features from different channels do not all con-
tribute positively to semantic predictions [1], [41], necessitating
the recalibration of heterogeneous features along the channel
dimension [42]. To address these challenges, we introduce the
GFRM (see Fig. 2(a)) to recalibrate and fuse 7% and 77 . The
cross-attention mechanism, which considers interactions among
all positions in the input, is well-suited for calibrating comple-
mentary heterogeneous global features and has demonstrated
excellent performance in many visual tasks [12]. Drawing in-
spiration from these approaches, the GFRM first recalibrates
global features using a cross-attention mechanism, which can
be formulated as follows:

Gl = Softmax (QfoT) r V¥ + GE, 3)
GX' = Softmax (Q;X KZRT) wELGE, @)
F¢ = Norm ((5 ([G?,G?])) , 3)

where G¥* and G represent the i-th feature maps within FE
and FZ, respectively, GPE and G are then identically mapped
to query Qf’X, key K?’X and value VZR’X embeddings, [-, -]
denotes the concatenation operation along the channel dimen-
sion, and ¢ is a non-linear activation function. The learnable
coefficients x; and ~; can adaptively adjust attention signifi-
cance [43]. For ¢, we further employ channel-wise attention to
emphasize key features and suppress those with low information
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density, which can be formulated as follows:

H W
SQ Si 5 o ‘
Zij = W Z_:w:1 F; (h,w,j), 6)
F¢=Fco (Conv( )) + F¢, @)

where z; = [2i.1, ..., 2zi.c,] € RP1*C stores the average pool-
ing results of each feature map in FZ-C, o is the sigmoid function,
and ® denotes the Hadamard product operation. Finally, we
obtain the fused global feature F& = {F¢ ... F$}. Here,

FZG € ]RS%‘ XF G represents the global features in the :-th
feature fusion stages.

2) Local Feature Fusion Module: To preserve more local
contexts when fusing heterogeneous features £ and F5*, we
propose a convolution-based LFFM (see Fig. 2(b)). Inspired by
the MLP-Mixer [44], our LFFM captures relationships between
heterogeneous features from different local regions, generating
fused local features. The LFFM can be mathematically repre-
sented as follows:

HI = DWConv (Conv([LE, L)), ®)
where L and L represent the i-th feature maps within 7. 2 and
F i( , respectively, each having C; channels. After concatenating
L and L along the channel dimension, we employ depth-wise
separable convolutions to expand their channels to 4C;, thereby
enhancing the local context. The resultant H* is then split into
H and HY along the channel dimension. This design allows
the model to learn new feature representations, which is further
validated in Table XI. These two components interact through
Hadamard multiplication, enabling the capture of relationships
between features from different local regions:
= Conv (H © o(H)), )
1x1
where we utilize the Gaussian error linear unit (GELU) as the
activation function o (+). Then we obtain the fused local features

L ={F¥, ... FI}, where FF ¢ R % % represents the
local features in the i-th feature fusion stage.

3) Feature Enhancement and Integration Module: Spatial
information is crucial for capturing spatial structures in visual
perception tasks [15]. Nonetheless, our GFRM and LFFM fuse
heterogeneous features across channel dimensions, squeezing
spatial information into a channel descriptor, and hence is
difficult to preserve positional information [45]. Therefore, it
is necessary to introduce additional spatial information when
integrating global features 7 and local features . The spatial
attention mechanism emphasizes the importance of specific re-
gions within features, aiding the network in focusing on “where”
informative parts are located [46]. Inspired by the coordinated
attention [45], we introduce the FEIM (see Fig. 2(c)) to further
enhance and integrate 7 and F', enabling the module to detect
more subtle spatial variations. Specifically, we employ global
pooling kernels (H, 1) or (1, W) to aggregate features along the
height and width dimensions, respectively. Thus, the output of
the j-th channel at height p and width g can be formulated as:

F} =F{ + F}, (10)

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 10, NO. 5, MAY 2025

Hp Z F{(p,m, ), (11)
0<m<W

w 1 .

a=7 2. Fimad), (12)
0<n<H

where FZG and F¥ represent the i-th feature maps within F¢
and FL, respectively, and Zlh e RH*1xCi a9 well as VAMNS
R1WxCi gtore the average pooling results of each feature map
in F'¥ across the dimensions of H and W, respectively. Z"
is subsequently reshaped into R">*1*C: We further apply a
convolutional layer and a Sigmoid function to make full use
of the captured positional information, enhancing the network’s
ability to accurately emphasize regions of interest. This process
can be formulated as follows:

Zi=o (Clgqv([Z?, Z:;“])) : (13)

where [-, -] denotes the concatenation operation along the spa-
tial dimension. Then, Z; is split into two separate tensors:
~h ~ . . .

Z,; € RITx1xC and Z;U € RW>1xC: This allows interactions

~h A~ . . :
between Z; and Z;U from both dimensions, enhancing the
emphasis on regions of interest. Z;ﬂ is then reshaped into

s . ~h
R“WXC‘. Each element within the two attention maps, Z,
and Z , indicates the presence of objects of interest across

respective rows or columns. Z? and ZAzw are applied to F?
to more accurately pinpoint the exact location of the object of
interest, which can be written as follows:

FI—F$0Z 02 (14)
Finally, we obtain the fused features 7% = {F¥ . . FI'},
which are forwarded to the decoder to obtain the final semantic
prediction. Given the outstanding performance of the multi-scale
Transformer decoder employed in RoadFormer, we retain this
design. Please refer to [1] for more details on the decoder and
loss function.

IV. EXPERIMENTS

A. Datasets

We compare RoadFormer+ with other SOoTA scene parsing
networks on the following seven RGB-X datasets:

1) SYN-UDTIRI [1]: This dataset contains over 10,000 pairs
of stereo road images, along with corresponding depth maps,
surface normal information, and semantic annotations, including
three categories: freespace, road defect, and other objects. It is
created using the CARLA simulator [47] and first introduced
in our previous work [1]. The input images are resized to a
resolution of 640 x 352 pixels.

2) KITTI Road [48]: This dataset has 289 pairs of stereo road
images and their corresponding LiDAR point clouds for both
model training and validation. We employ a data pre-processing
strategy akin to that detailed in [7]. The input images are resized
to a resolution of 1,280 x 384 pixels.

3) Cityscapes [18]: This widely used urban scene dataset
contains 2,975 stereo training images and 500 validation images,
with well-annotated semantic annotations. Notably, the surface
normal information is derived from depth images generated
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TABLE I
QUANTITATIVE COMPARISON OF ROAD DEFECT DETECTION ON THE SYN-UDTIRI TEST SET

Method Publication ToU (%) 1 Fsc (%) 1 Pre (%) t Rec (%) 1 #Params (M) |
OFF-Net ICRA22 [3] 83.80 91.20 91.90 90.50 252
RTENet RAL’19 [30] 90.50 95.00 95.50 94.50 254.5
DFormer ICLR’24 [53] 90.88 95.22 96.09 94.37 38.8
CAINet T-MM’24 [14] 91.77 95.71 95.43 95.99 12.2
SNE-RoadSeg ECCV’20[7] 92.10 95.90 96.70 95.10 201.3
CMX T-ITS’23 [12] 93.31 96.27 96.54 96.81 138.8
RoadFormer (B) T-IV’24 [1] 93.06 96.41 96.19 96.63 206.8
RoadFormer (L) T-IV'24 1] 93.51 96.65 96.61 96.69 438.6
RoadFormer+ (B) Ours 94.11 96.96 97.03 96.90 152.4

TABLE I

using RAFT-Stereo [49], trained on the KITTI dataset [S0]. The
input images are resized to a resolution of 1,024 x 512 pixels.

4) KITTI Semantics [17]: This dataset contains 200 images
and their corresponding semantic annotations across 19 classes.
Surface normal information is derived from depth data acquired
using ViTAStereo [51], chosen for its superior accuracy. The
input images are resized to a resolution of 1,280 x 384 pixels.

5) MFNet [8]: This urban driving scene parsing dataset con-
tains 1,569 synchronized pairs of RGB and thermal images at a
resolution of 640 x 480 pixels. It includes semantic annotations
across nine classes: bike, person, car, road lanes, guardrail, car
stop, bump, color cone, and background.

6) FMB [52]: This dataset contains 1,500 well-rectified
RGB-Thermal image pairs (resolution: 800 x 600 pixels),
captured in urban driving scenes under different illumination
conditions. It provides semantic annotations across 14 classes.

7) ZJU [9]: This RGB-Polarization dataset, designed for
automated driving applications, contains 394 image pairs. Each
pair contains four polarized images captured at different polar-
ization angles (0°, 45°, 90°, and 135°). The input images are
resized to a resolution of 612 x 512 pixels.

B. Experimental Setup and Evaluation Metrics

For the SYN-UDTIRI and other RGB-Normal datasets, we
exclusively use surface normal information estimated using
the D2NT algorithm [54] owing to its superior accuracy. This
information serves as the “X” data to train our RoadFormer+.
Additionally, depth, thermal, and polarization information are
replicated across the channel dimension three times during data
pre-processing to match the H x W x 3 dimensions of RGB
images. During training, we employ the common data aug-
mentation techniques used in semantic segmentation, including
resizing, random cropping, and random flipping of RGB-X
image pairs. Additionally, we make random adjustments to the
brightness, contrast, saturation, and hue of the RGB images.
All networks are trained for the same number of epochs on an
NVIDIA RTX 3090 GPU using the AdamW optimizer [55],
with a polynomial decay strategy for the learning rate [23].
The initial learning rate is set to 10~# with a weight decay of
5 x 1072, and learning rate multipliers of 10~! are applied to
the weight-sharing backbone.

We evaluate the performance of our models using five com-
mon metrics: accuracy (Acc), precision (Pre), recall (Rec), in-
tersection over union (IoU), and F-score (Fsc). We refer readers
to our previous work [1] for more details on these metrics.
Additionally, the evaluation metrics used for the KITTI Road
and KITTI Semantics benchmarks are available on the official
webpage: cvlibs.net/datasets/kitti.

COMPARISON WITH SOTA ALGORITHMS PUBLISHED ON THE KITTI
ROAD BENCHMARK

Method MaxF (%) 1 Pre (%) 1 Rec (%) 1 Rank

SNE-RoadSeg [7] 96.75 96.90 96.61 13

RoadFormer (B) [1] 97.50 97.16 97.84 3

SNE-RoadSegV2 [31] 97.55 97.57 97.53 2

RoadFormer+ (B) 97.56 97.43 97.69 1
TABLE III

QUANTITATIVE COMPARISON OF FREESPACE DETECTION ON THE VALIDATION
SET OF THE CITYSCAPES DATASET

Method ToU (%) 1 Fsc (%) 1+ Acc (%) T

SNE-RoadSeg [7] 93.22 96.49 97.68

SNE-RoadSegV2 [31] 94.40 97.12 98.11

RoadFormer (B) [1] 95.87 97.89 98.30

RoadFormer+ (B) 96.01 97.96 97.82
TABLE IV

QUANTITATIVE COMPARISON OF ALL-CATEGORY SCENE PARSING ON THE
VALIDATION SET OF THE CITYSCAPES DATASET

Method mloU (%) T mFsc (%)t mAcc (%) 1
SegFormer [56] 64.51 76.99 76.39
% DeepLabV3+ [23] 68.66 80.34 78.89
& | ConvNeXt [30] 73.35 83.94 83.32
Mask2Former [29] 74.78 84.97 85.90
CAlNet [14] 62.38 75.04 73.68
2 | avx 2] 74.11 84.41 8330
2 DFormer [53] 74.37 84.55 84.00
E RoadFormer (B) [!] 76.09 85.83 86.30
RoadFormer+ (B) 77.42 86.72 86.23
RTENet [30] 49.60 61.20 90.00
= SNE-RoadSeg [7] 53.40 64.54 85.64
E | CAINet[14] 62.41 75.13 74.23
Z? CMX [12] 73.50 83.99 83.67
% RoadFormer (B) [1] 76.18 85.88 85.38
~ RoadFormer+ (B) 717.57 86.84 86.77
RoadFormer+ (L) 78.53 87.48 87.00

C. Comparison With SoTA Networks

We first conduct experiments on four RGB-Normal datasets.
The quantitative results on the SYN-UDTIRI, Cityscapes,
KITTI Road, and KITTI Semantics datasets are presented in
Tables I-V, respectively. In these experiments, the symbols
“B” and “L” respectively denote the use of ConvNeXt-B and
ConvNeXt-L as the backbones. These results demonstrate that
our proposed RoadFormer+ significantly outperforms all other
SoTA networks, including our previous work RoadFormer [1],
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TABLE V
COMPARISON WITH SOTA ALGORITHMS PUBLISHED ON THE KITTI
SEMANTICS BENCHMARK

Method ToU Class (%) 1 IoU Category (%) 1 Rank

RoadFormer (B) [1] 67.17 87.89 5

VideoProp-LabelRelax [57] 72.82 88.99 4

RoadFormer+ (B) 70.32 87.16 -

RoadFormer+ (L) 73.13 88.75 3
TABLE VI

QUANTITATIVE COMPARISON ON THE MFNET TEST SET

Method mloU (%) 1 | Rank
RTFNet [30] 53.2 33
RoadFormer (B) [1] 58.0 12
CAlNet [14] 58.6 9
CMX [12] 59.7 5
CMNeXt [58] 59.9 4
CRM-RGBTSeg [59] 61.4 3
HAPNet [60] 61.5 2
RoadFormer+ (B) 60.9 -
RoadFormer+ (L) 62.7 1
TABLE VII

QUANTITATIVE COMPARISON ON THE FMB DATASET

Method mloU (%) 1 | Rank

SegMiF [52] 54.8 4

RoadFormer (B) [1] 69.2 2

RoadFormer+ (B) 73.1 -

RoadFormer+ (L) 74.1 1
TABLE VIII

QUANTITATIVE COMPARISON ON THE ZJU-RGB-P DATASET

Method mloU (%) 1 | Rank
EAFNet [9] 85.7 5
RoadFormer (B) [1] 92.6 4
CMX[12] 92.6 3
RoadFormer+ (B) 92.9 -
RoadFormer+ (L) 93.0 1

across all four RGB-Normal datasets. This validates its excep-
tional performance and robustness in effectively parsing various
types of road scenes. Notably, as shown in Table I, RoadFormer+
based on ConvNeXt-B reduces the number of learnable param-
eters by 65% compared to RoadFormer.

Furthermore, we conduct experiments on the Cityscapes
dataset by treating it as both a binary segmentation task (road
versus background) and a full-category segmentation task (19
labeled categories plus an ‘“‘ignore” category). Experimental
results are presented in Tables III and IV, respectively. We also
compare RoadFormer+ with four SoTA single-modal networks.
It is worth noting that traditional data-fusion networks, which
typically employ basic element-wise addition or feature-level
concatenation for feature fusion, perform worse than single-
modal networks. This underperformance may be attributed to
the noise present in disparity maps used for surface normal
estimation, which are derived directly from a stereo matching
network pre-trained on the KITTI dataset. Experimental results
further demonstrate that RoadFormer+ effectively overcomes
this issue through feature recalibration and enhancement, thus
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SNE-RoadSegV2

RoadFormer

RoadFormer+
(Ours)

Fig.3. Qualitative comparison between our proposed RoadFormer+ and other
SoTA networks on the KITTI Road dataset. The results are produced by the
official KITTI online benchmark suite. The classifications are visualized with
true positives in green, false positives in blue, and false negatives in red.

Semantic Ground Truth

Fig. 4. Qualitative comparisons between our proposed RoadFormer+ and
other SoTA networks on the Cityscapes validation set, where significantly
improved regions are shown with yellow dashed boxes.

preventing performance degradation even when surface normal
information is inaccurate.

We submit the test set results obtained by RoadFormer+
to both the KITTI Road and KITTI Semantics benchmarks
for performance comparison. As shown in Tables II and V,
RoadFormer+ ranks first on the KITTI Road benchmark and
ranks third on the KITTI Semantics benchmark. Notably, the top-
performing SOTA methods in the KITTI Semantics benchmark
employ sequential frames (£10) from the scene flow subset for
data augmentation. Despite this, RoadFormer+ exhibits superior
performance in urban scene parsing compared to all previously
published methods.

Furthermore, we explore the applicability of RoadFormer+
for RGB-Thermal and RGB-Polarization scene parsing. Experi-
mental results on three public datasets, MFNet (RGB-Thermal),
FMB (RGB-Thermal), and ZJU (RGB-Polarization), demon-
strate the superiority of RoadFormer+ over other task-specific
data-fusion networks for these modalities. Impressively, Road-
Former+ achieves an improvement in mloU of 1.2-9.5% on the
MFNet dataset, 4.9-19.3% on the FMB dataset, and 0.4—7.3% on
the ZJU dataset, compared to other SOTA methods. These results
underscore the versatility of our network in handling diverse data
types. It is important to note that since the “bicycle” category is
not included in the test set of the FMB dataset, and we report
the mIoU metrics excluding the “bicycle” category.

Qualitative comparisons on the KITTI Road, Cityscapes, and
MFNet datasets are presented in Figs. 3-5. The dual-branch
feature fusion design of RoadFormer+ enables effective capture
of both local and global contexts, thereby outperforming previ-
ous single-branch heterogeneous feature fusion approaches. Our
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RGB Image Semantic Annotation RoadFormer+ (Ours) HAPNet

CRM-RGBTSeg

RGB Image Semantic Annotation RoadFormer+ (Ours)

CRM-RGBTSeg

Fig. 5.
highlighted in red dashed boxes.

TABLE IX
ABLATION STUDY ON THE BACKBONE TRAINING STRATEGY WHEN USING
CONVNEXT AS THE BACKBONE

Strategy SYN-UDTIRI MFNet ‘ ZJU #Params (M)* |
ToU (%)t mloU (%)71 | mIoU (%)t
Weight-Separating 92.88 58.88 92.54 206.8
Weight-Sharing 92.87 ‘ 58.96 92.47 ‘ 113.7
*The resolution of the input image is set to 640x352 pixels.
TABLE X
ABLATION STUDY ON THE BACKBONE SELECTION AND THE EFFECTIVENESS OF
OUR PROPOSED HFDE
Backbone GFE LFE ToU (%) 1 #Params (M) |
ConvNeXt-B v X 93.05 123.8
ConvNeXt-B X v 93.13 124.9
ConvNeXt-B v v 93.44 1349
DiNAT-B v v 93.19 136.1
UniRepLKNet-B v v 93.36 145.5

method not only demonstrates robust performance in compre-
hensive scene understanding but also excels in delineating de-
tailed boundaries. Additionally, RoadFormer+ exhibits superior
capabilities in handling challenging conditions such as darkness
and fog, demonstrating its versatility across diverse scenarios.
Furthermore, RoadFormer+ consistently delivers robust perfor-
mance across various illumination conditions. As illustrated in
the second row of Fig. 5, RoadFormer+ outperforms all existing
data-fusion methods in handling overexposed scenes within the
MFNet dataset.

D. Ablation Studies

We conduct ablation studies on the SYN-UDTIRI, MFNet,
and ZJU datasets. Our baseline is built upon RoadFormer [ 1], and
all implementation details are consistent with those described in
Section I'V-B.

1) Effectiveness of HFDE: Building on our previous find-
ings stated in [1] that demonstrated the effectiveness of Con-
vNeXt [36] in urban scene parsing, we continue to employ it as
the backbone in this study. We investigate two backbone training
strategies: weight-sharing and weight-separating. The results,
presented in Table IX, show that the weight-sharing strategy not
only achieves performance comparable to the weight-separating
strategy across three RGB-X datasets but also significantly

Qualitative comparisons between our proposed RoadFormer+ and other SoTA networks on the MFNet test set, with significantly improved regions

TABLE XI
ABLATION STUDY ON THE EFFECTIVENESS OF OUR PROPOSED MHFF BLOCK

. SYN-UDTIRI MFNet ZJU

Feature Fusion Method
ToU (%)t mloU (%)t mloU (%)t

HFFM + FFRM 93.44 59.34 92.72
HFFM + LFFM + FFRM 93.67 60.13 92.70
GFRM + LFFM + FFRM 93.82 60.51 92.85
GFRM + LFFM + FEIM 93.91 60.91 92.89
GFRM + LFFM* + FEIM 93.45 60.69 92.64
GFRM + LFFM + FEIM*™ 93.76 59.42 92.55

* The feature channel number of LFFM is doubled due to direct duplication.
= Zi’ and Z7" in the FEIM are processed separately without interaction.

reduces the model’s parameters by nearly half. This observa-
tion calls into question the utility of traditional duplex encoder
designs in these applications.

We further validate the effectiveness of our proposed GFE and
LFE on the SYN-UDTIRI dataset in terms of heterogeneous
feature enhancement. It is evident that using either GFEs or
LFEs independently can effectively enhance our model’s per-
formance, and their combined use results in an IoU increase
of 0.57%. Additionally, we compare ConvNeXt with recently
proposed models, including the Transformer-based DiNAT [39]
and UniRepLKNet [35], which both employ large-kernel con-
volutions. The results affirm that ConvNeXt continues to exhibit
superior performance compared to other backbones.

2) Effectiveness of the MHFF Block: As illustrated in
Table XI, we utilize RoadFormer as the baseline and alternately
replace its feature fusion module with components from our
proposed MHFF block to validate the efficacy of the dual-
branch feature fusion design. First, we maintain RoadFormer’s
HFFM and FFRM to fuse global and local features, with the
results depicted in the first row. As indicated in the second
row, we maintain the use of the HFFM for global feature fusion
while integrating the proposed LFFM for local feature fusion,
resulting in performance improvements on the SYN-UDTIRI
and MFNet datasets, while maintaining stability on the ZJU
dataset. Subsequently, HFFM is replaced with our proposed
GFRM, with results shown in the third row. Finally, FFRM is
replaced with the proposed FEIM, with results presented in the
fourth row. The experimental results underscore the individual
effectiveness and compatibility of our proposed GFRM, LFFM,
and FEIM. When fully integrated, these modules significantly
enhance RoadFormer+’s performance in processing three types
of RGB-X data compared to the original RoadFormer’s feature
fusion method. The feature fusion method presented in row
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four is our proposed MHFF block. To further validate the ef-
fectiveness of the channel expansion design in LFFM and the
collaborative processing of Z! and Z in FEIM, additional
experiments are conducted. Removing these operations leads to
a decline in the overall performance, as demonstrated in rows
five and six.

V. CONCLUSION

This article reviewed designs for heterogeneous feature ex-
traction and fusion strategies and introduced RoadFormer+,
a highly efficient, robust, and applicable urban scene parsing
network. Breaking down our contributions further, our work
contains five key technical advancements: two modules for
feature decoupling in the encoding stage, and three new com-
ponents within the feature fusion module. The effectiveness of
each contribution was validated through extensive experiments.
RoadFormer+ outperforms other SoTA algorithms across mul-
tiple RGB-X scene parsing datasets. Our future work will pri-
marily focus on investigating lightweight algorithms to enhance
adaptability to terminal devices.
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