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DCPI-Depth: Explicitly Infusing Dense
Correspondence Prior to Unsupervised
Monocular Depth Estimation
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and Rui Fan

Abstract—There has been a recent surge of interest in learning
to perceive depth from monocular videos in an unsupervised fash-
ion. A key challenge in this field is achieving robust and accurate
depth estimation in regions with weak textures or where dynamic
objects are present. This study makes three major contributions
by delving deeply into dense correspondence priors to provide
existing frameworks with explicit geometric constraints. The first
novel contribution is a contextual-geometric depth consistency
loss, which employs depth maps triangulated from dense corre-
spondences based on estimated ego-motion to guide the learning
of depth perception from contextual information, since explicitly
triangulated depth maps capture accurate relative distances
among pixels. The second novel contribution arises from the
observation that there exists an explicit, deducible relationship
between optical flow divergence and depth gradient. A differential
property correlation loss is therefore designed to refine depth
estimation with a specific emphasis on local variations. The third
novel contribution is a bidirectional stream co-adjustment strat-
egy that enhances the interaction between rigid and optical flows,
encouraging the former towards more accurate correspondence
and making the latter more adaptable across various scenarios
under the static scene hypotheses. DCPI-Depth, a framework that
incorporates all these innovative components and couples two
bidirectional and collaborative streams, achieves state-of-the-art
performance and generalizability across multiple public datasets,
outperforming all existing prior arts. Specifically, it demonstrates
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accurate depth estimation in texture-less and dynamic regions,
and shows more reasonable smoothness. Our source code is
publicly available at https://mias.group/DCPI-Depth.

Index Terms—Depth estimation, dynamic object, dense corre-
spondence, geometric constraint.

I. INTRODUCTION

ONOCULAR depth estimation, a crucial research field

in computer vision and robotics, has applications
across various domains, such as autonomous driving [1],
augmented reality [2], and embodied artificial intelligence [3].
It provides agents with powerful environmental perception
capabilities, enabling robust ego-motion estimation and 3D
geometry reconstruction [4]. Early monocular depth estimation
approaches [5], [6], developed based on supervised learning,
typically require a large amount of well-annotated, per-pixel
depth ground truth (generally acquired using high-precision
LiDARs [7]) for model training [8]. Nevertheless, collecting
and labeling such data is tedious and costly [9]. Thus, the prac-
tical use of these supervised approaches remains limited [10].

In recent years, un/self-supervised monocular depth estima-
tion has garnered significant attention [4], [9], [11], [12], [13],
[14]. Such approaches obviate the need for extensive depth
ground truth by leveraging either stereo image pairs [15], [16]
or monocular videos to jointly learn depth and ego-motion
estimation [4]. Specifically, given the target and source images,
the estimated depth map (at the target view) and camera ego-
motion are employed to warp the source image into the target
view. The depth estimation network (hereafter referred to as
DepthNet) and the pose estimation network (hereafter referred
to as PoseNet) are then jointly trained in an un/self-supervised
manner by minimizing the photometric loss, which measures
the consistency between the reconstructed and original target
images [4], [9], [13], [17].

Despite the progress made, three limitations in existing
frameworks continue to impede further advances in monocular
depth estimation:

1) DepthNet perceives depth based on the contextual infor-
mation in RGB images. While it effectively determines
whether an object is in front of or behind another,
accurately and efficiently learning their relative distance
by minimizing the photometric loss is challenging. This
is because photometric loss cannot directly reflect the
magnitude of depth error, sometimes resulting in
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unsuitable gradients for optimizing depth during back-
propagation.

Local depth variation is commonly constrained by edge-
aware smoothness loss, which encourages local smooth-
ness in depth based on image gradients [15]. However,
since changes in image intensity do not directly correlate
with local depth variation, this enforced smoothing can
introduce errors in depth estimation.

Comparable photometric losses can result from different
rigid flows, which may map a pixel to the wrong
candidates with similar pixel intensities. This implies
that the supervisory signals provided by the photometric
loss to DepthNet and PoseNet are indirect, possibly
leading to unsatisfactory robustness of monocular depth
estimation, particularly in regions with weak textures.

2)

3)

Therefore, in this article, we introduce a novel unsu-
pervised monocular depth estimation framework, known as
Dense Correspondence Prior-Infused Depth (DCPI-Depth),
to overcome the limitations above by exploiting the depth
cues in dense correspondence priors. Our DCPI-Depth consists
of two bidirectional and collaborative streams: a traditional
photometric consistency-guided (PCG) stream and our pro-
posed correspondence prior-guided (CPG) stream. The PCG
stream, following the prevalently used methods [4], [9], [13],
[14], employs estimated depth and ego-motion information
to warp the source frame into the target view, and then
computes a photometric loss to provide the supervisory signal.
On the other hand, the CPG stream leverages a pre-trained
FlowNet [18] to provide dense correspondence priors. These
priors are first utilized along with the estimated ego-motion
to construct a geometric-based depth map via triangulation
[19]. Such an explicitly derived depth map captures accurate
relative distances among pixels. By enforcing consistency
between these two sources of depth maps through a newly
developed contextual-geometric depth consistency (CGDC)
loss, we significantly optimize the convergence of DepthNet
during training. Moreover, optical flow divergence, a differ-
ential property of dense correspondence priors, is found to
have an explicit relationship with depth gradient. Building
upon this relationship, we develop a novel differential property
correlation (DPC) loss to improve depth quality from the
aspect of local variation. Finally, a bidirectional stream co-
adjustment (BSCA) strategy is adopted to make the two
streams complement each other, where the rigid flow in the
PCG stream mainly alleviates the misguidance of the CPG
steam to depth on dynamic objects, while the optical flow in
the CPG stream refines the rigid flow produced in the PCG
stream with dense correspondences.

In summary, the main contributions of this article include:

e DCPI-Depth, a novel unsupervised monocular depth esti-
mation framework with a CPG stream developed to infuse
the dense correspondence prior into the traditional PCG
stream,;

e A CGDC loss to optimize the convergence of DepthNet
using a geometric-based depth map constructed by tri-
angulating dense correspondence priors with estimated
ego-motion;
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e A DPC loss to further refine the quality of the estimated
depth from the aspect of local variation based on the
explicit relationship between optical flow divergence and
depth gradient;

e A BSCA strategy to enable the two streams to comple-
ment each other, with a specific emphasis on improving
depth accuracy in dynamic regions without using masking
techniques.

The remainder of this article is organized as follows: Sect. II
presents an overview of existing monocular depth estimation
methods. In Sect. III, we detail the proposed DCPI-Depth
framework. In Sect. IV, we present the experimental results
across several public datasets. In Sect. V, we discuss two lim-
itations of the DCPI-Depth framework. Finally, we conclude
this article and discuss possible future work in Sect. VI.

II. RELATED WORK
A. Supervised Monocular Depth Estimation

Supervised monocular depth estimation approaches [6],
[20], [21], [22] require depth ground truth for model training.
As the first attempt, the study [5] proposed a coarse-to-fine
architecture and a scale-invariant loss function to perceive
depth from a single image. In subsequent studies [23] and [24],
monocular depth estimation was reformulated as a per-pixel
classification task, where depth ranges instead of exact depth
values are predicted. Furthermore, to combine the benefits of
both regression and classification tasks, the study [25] rede-
fined this problem as a per-pixel classification-regression task,
which utilizes bins to categorize depth values. Building on this
approach, the study [26] further enhanced depth estimation
by progressively optimizing the search range for high-quality
depth within these bins. With the rapid advancement of genera-
tive models, the study [27] introduced a diffusion model-based
depth estimation approach, which produces highly refined
depth predictions through iterative denoising. More recently,
Depth Anything [28] has demonstrated impressive perfor-
mance, primarily due to its powerful backbone (a vision
Transformer-based vision foundation model) that is capable
of extracting general-purpose, informative deep features. It
first reproduces a MiDaS-based [29] teacher model with pre-
trained weights from DINOv2 [30], and then utilizes the
teacher’s predictions as pseudo-labels to train a student model
on large-scale unlabeled data. Building on single-image depth
estimation, monocular video depth estimation incorporates
both temporal and geometric consistencies [2]. Representative
works, such as [2] and [31], pioneered the use of corre-
spondences and camera poses to enforce inter-frame depth
consistency in 3D space, which inspires us to further explore
the way of infusing dense correspondence priors to guide the
unsupervised learning for monocular depth estimation.

B. Un/Self-Supervised Monocular Depth Estimation

To liberate monocular depth estimation from dependence on
extensive ground-truth data, un/self-supervised approaches [4],
[9], [13], [14], [15], [32] have emerged as viable alternatives.
These methods typically utilize the estimated depth map to
establish a differentiable warping between two images and
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Fig. 1. The overall architecture of our proposed DCPI-Depth framework, which consists of two collaborative and bidirectional streams: PCG and CPG. The
input image pairs, PoseNet, and the estimated ego-motion are depicted separately in each stream.

employ photometric loss to provide supervisory signals [4],
[33]. The study [33] represents the first reported attempt to
learn monocular depth estimation from stereo image pairs
within a self-supervised framework. Subsequently, the study
[4] extended this approach by coupling the learning of depth
and ego-motion estimation from monocular videos. How-
ever, un/self-supervised methods often face challenges with
independently moving objects and preserving clear object
boundaries, due to multi-view ambiguities [13]. Therefore,
in the study [9], a minimum reprojection loss and an auto-
masking technique were introduced to exclude such regions
during model training, which significantly improves depth
estimation performance. Building upon these prior arts, sev-
eral studies explored more sophisticated network architectures
[14], [34], [35], [36], [37], [38] for improved depth estimation
performance. Others incorporate additional relevant tasks such
as optical flow estimation [39], [40], [41] and semantic seg-
mentation [42], [43], [44] to enhance cross-task consistency
or address the dynamic object challenge.

While these efforts have demonstrated promising per-
formance, existing unsupervised frameworks still present
significant opportunities for refinement [13]. This limitation
primarily arises from the reliance on contextual informa-
tion to infer the pixel-wise depth map, which is indirectly
supervised through the minimization of photometric loss.
In the absence of guidance from additional and meaningful
prior knowledge, DepthNet struggles to perform robustly in
challenging scenarios. Therefore, in study [13], a monocular
depth estimation model pre-trained on large-scale datasets is
utilized to provide pseudo-depth, a single-image depth prior,

and two depth refinement loss functions are also designed to
achieve more robust and reliable depth estimation. However,
the limited accuracy of the pseudo-depth significantly restricts
the refinement capabilities of these loss functions. Therefore,
in this article, we resort to dense correspondence priors for
depth refinement. Unlike pseudo-depth, these priors ofter more
direct, reliable, and interpretable geometric guidance through
our developed CGDC and DPC losses.

III. METHODOLOGY
A. Overall Architecture

As illustrated in Fig. 1, our proposed DCPI-Depth frame-
work comprises two collaborative and bidirectional streams:
PCG and CPG. The former, following the prior studies [9],
[13], [14], effectively yet indirectly supervises the training of
DepthNet and PoseNet through the photometric loss, while the
latter infuses dense correspondence priors (provided by a pre-
trained FlowNet) into the former to overcome the limitations of
current SOTA frameworks [13], [14], [37], which rely solely on
the PCG stream. Specifically, within the CPG stream, we intro-
duce two novel loss functions: (1) a CGDC loss that guides
the training of DepthNet by enforcing consistency between
geometric-based and contextual-based depth maps, enabling
DepthNet to capture accurate relative distances among pixels,
thereby optimizing its convergence during training; (2) a
DPC loss to constrain the local variation of depth based on
the explicit relationship between optical flow divergence and
depth gradient. Furthermore, we develop a BSCA strategy to
collectively improve the aforementioned two streams: the rigid
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flow ensures accurate geometric guidance for depth estimation
mainly on dynamic objects, while the optical flow refines the
rigid flow based on dense correspondence, thus allowing these
two streams to effectively complement each other.

B. Contextual-Geometric Depth Consistency Loss

In the conventional PCG stream, given target and source
video frames' I,; € RP*WX3 DepthNet takes I, as input
to infer a depth map DS e RF*W based on contextual
information, where H and W represent the height and width of
the input image, respectively, while PoseNet estimates the ego-
motion, including a rotation matrix R = [r],r],r;1" € SO(3)
and a translation vector ¢ = [t|,1,1;]7 € R? from the source
view to the target view. The rigid flow map FX, e RFxWx2
from the target view to the source view can then be generated
as follows: . c 1

|:F,_>6(P,)} p~K[R ] [D[ oK pf] ,

where the symbol ~ indicates that two vectors are equal up
to a scale factor, K represents the camera intrinsic matrix,

p, = [u,v]" denotes a 2D pixel, and p, is its homogeneous
coordinates. I is then warped into the target view using the
rigid flow map FX,, generating I,. By comparing I, with
I,, the following photometric loss is computed to provide
a supervisory signal for the training of both DepthNet and
PoseNet [45]:

L,=«a

(1

1 — SSIM(I, I,) o
2

where SSIM denotes the pixel-wise structural similarity index
operation [46], and the weight « is set to 0.85, following the

study [9].

DepthNet in the conventional PCG stream is trained to
infer depth value per pixel from contextual information by
minimizing (2) based on given RGB image pairs. Previous
studies have neglected to incorporate geometric guidance into
DepthNet training, leading to a significant limitation. While
DepthNet can ascertain whether an object is in front of or
behind another relative to the camera origin from contextual
information, it struggles to effectively learn the extent of their
relative distances by solely minimizing the photometric loss.
This challenge arises because errors in image intensities do not
directly reflect depth errors in terms of magnitude, rendering
the gradient from photometric loss during back-propagation
not always suitable for depth optimization.

To address these limitations, we resort to dense corre-
spondence priors to generate another depth map based on
well-developed and interpretable principles of multi-view
geometry, thereby providing an additional constraint on depth
estimation from RGB images. We first introduce a pre-trained
FlowNet [18] to generate the optical flow map FY, €
RHXWX2 " from which the following dense correspondence
priors are derived:

- =K"p,

F2,,
pg — K—l (ﬁt + [ l—)(_;(pl)}) ,

[

s” denote “target” and “source”,

+U-o|I -1,

3)

n this article, the subscripts “#” and
respectively.
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where i),c and ﬁf represent a pair of normalized camera
coordinates along the optical axis in the target and source
views, respectively. We then leverage such dense correspon-
dence priors along with the ego-motion estimated by PoseNet
to construct a geometric-based depth map D € RI*W via
triangulation [19] based on the following relationship:

G ~C
i’? - [R t] |:Dz (ft)Pt ] ]

ﬁf,i’ the i-th element in i)f (i =1{1,2}), is expressed as follows:

“4)

DtG(pt)r:TIA’fj + 1
DE(p)ript +1

5C _

s,

&)

DC can then be yielded by triangulating the dense correspon-
dences using the following expression:

) (6)

which reflects the relative distances among pixels, derived
from motion. Therefore, we employ the following CGDC loss:

1 D (p) - D (p)|
TEWY D

to provide DepthNet with an additional constraint, enabling it
to capture accurate relative distances among pixels, reflected
by motion. Since the CGDC loss directly measures the relative
differences between two types of depth maps, it provides more
informative gradients with respect to depth errors, thereby
facilitating the convergence of DepthNet. Considering that
higher depth values potentially exhibit greater absolute depth
error, we adopt relative error in our CGDC loss to ensure more
consistent gradients for back-propagation across all pixels. The
effectiveness of our proposed CGDC loss is validated and
discussed in Sect. IV-E.

L. (7)

C. Differential Property Correlation Loss

Existing approaches [14], [37] that include only the PCG
stream often struggle to distinguish and effectively han-
dle regions with different levels of continuity. Specifically,
these methods encounter difficulties in ensuring smooth depth
changes in continuous regions and preserving clear boundaries
near or at discontinuities. This problem arises primarily due to
the lack of proper constraints that encourage DepthNet to con-
sider local depth variations, especially since the depth of each
pixel is estimated independently. Several studies [8], [9], [14],
[37], [45], [47] introduced an edge-aware smoothness loss
based on image gradients, initially presented in the study [15],
to encourage local smoothness in depth estimation. However,
such a loss function is somewhat problematic and incomplete.
While this loss function is effective in regions where depth
and image intensity have consistent change trends, it cannot
constrain the extent of smoothing. Moreover, in continuous
regions with rich texture or at discontinuities with subtle
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Tllustrations of optical flow divergence and auto-masking result: (a) optical flow divergence for pixels with similar intensities yet being spatially

discontinuous; (b) optical flow divergence for pixels with significantly different intensities yet being spatially continuous; (c) auto-masking result for the given
source and target images. A given pixel and its four neighbors in the target image are utilized for visualization in (a) and (b), where it can be observed that
their correspondences in the source image are widely separated in (a) but similarly distributed in (b). The auto-masking algorithm tends to overly mask static
regions, particularly in low-texture areas or when overexposed, and cannot effectively mask dynamic objects.

texture changes, this loss function may prove ineffective or
even cause misleading guidance.

This study finds that, compared to pixel intensity, the dense
correspondence priors between two images, as provided by
FlowNet, have a more direct and deducible relationship with
depth changes. As illustrated in Fig. 2(a), adjacent pixels
that have similar intensities but are spatially discontinuous
(because they are located on different objects) are likely
to exhibit significantly different apparent motions, resulting
in high optical flow divergence due to the separation of
these pixels. In contrast, as illustrated in Fig. 2(b), pixels
that have different intensities but are located in continuous
regions typically have similar apparent motions, resulting in
low optical flow divergence. divF, the divergence map of
the given optical flow map F, can be numerically calculated
through the following expression:

divF(u,v) = -n, Fu—1,v) + n) F(u + 1,v)

+n) F(u,v+1)—n]F(u,v - 1), 8)
where n, = [1,0]" and n, = [0, 1]T are two unit vectors in the
horizontal and vertical directions, and the symbol = represents
discretization. Therefore, we are motivated to establish an
explicit constraint on local depth variation by leveraging the
two correlated differential properties: optical flow divergence
and depth gradient. This allows for more accurate depth
estimation by ensuring that changes in depth are consistently
aligned with variations in optical flow.

However, it has been proven in the study [48] that rotational
flow is independent of depth. Therefore, only the translational
component of ego-motion contributes to constraining depth
estimation from the aspect of local variation using optical
flow divergence, and incorporating rotational flow, particularly
when it is substantial, can disrupt this constraint.

To address this issue, we eliminate the rotational apparent
motions in the optical flow using the following expression:

- FYS, 9)

FTra = FO

1—s t—s

where F™ denotes the translational optical flow, and FR°,
the rotational rigid flow, is generated using the estimated R
and a translation vector of zeros 0 as follows:

Rot C 1~
The relation between translational apparent motion and depth
can then be written as follows:

[ 9]

F5(p)] _ .
O Dg(pb) pt
_(Diw) |, _ Kt
“\ 0y )P T Do)
s () sy
. hi/t
3 ~ ~
=——|b-b,—-K|t/ts |], (11)
Di(p) ™ 0

where Df(ps) = D,C(p,) — t3 under the condition of R = 1,
and p, denotes the homogeneous coordinates of the image
principal point. We calculate the divergence of the optical flow
at p, as follows:

13
y . -v.({—=
=P (Wm%ad
I3 I3

+
Di(p)-15  Di(p)-1s

=q,-V V-p., (12)

.
where V=| —,— | , and g, is expressed as follows:
ou Ov
q . .
|:0t] =D~ Do -K

Rewriting (12) into the following expression:

DC(P ) -1 T
%V ’ FtT—?s(pz) -V D,

t/t3
h/t3
0

13)

C'(p)
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= 2 . VD{(p,).

DS (p)—13
Cc’(p)

where C* € R¥*W and CP e R”*W denote the differential
properties derived from optical flow divergence and depth gra-
dient, respectively. (14) establishes a mathematical relationship
between these two differential properties, which are expected
to be numerically equivalent. Therefore, we formulate the
following DPC loss:

1 |CP(p) - C"(p)|
Ly=— —_—
‘ szp: [CP(p)]

(14)

5)

Specifically, it encourages DepthNet to produce depth maps
whose local variations are consistent with those implied by
the optical flow maps. Such a consistency constraint enables
more reasonable smoothness, especially in those regions where
depth and image intensity do not have consistent change
trends. Similar to (7), we consider the relative error in (15).
The effectiveness of our proposed DPC loss is validated
through an ablation study detailed in Sect. IV-E.

D. Bidirectional Stream Co-Adjustment Strategy

In the conventional PCG stream, rigid flow is generated
using the outputs from DepthNet and PoseNet, which are
indirectly supervised by minimizing the photometric loss.
DepthNet, when trained in this manner, often struggles in
texture-less regions, where a pixel in the target video frame
might correspond to multiple pixels with similar intensities
in the source frame. Therefore, we are motivated to improve
depth estimation in these regions by leveraging the dense
correspondences provided by a well-trained FlowNet.

In our proposed CPG stream, despite the effectiveness
of infusing dense correspondence priors provided by a pre-
trained FlowNet into monocular depth estimation through
our developed CGDC and DPC losses, these priors often
capture independent apparent motions unrelated to depth when
dynamic objects are involved. Additionally, occlusion regions
that lack valid correspondences between consecutive frames
also lead to unreliable priors. Therefore, directly leveraging
the dense correspondence priors from a pre-trained FlowNet
can mislead the DepthNet, due to inaccuracies in geometry-
based depth estimation and the misalignment between optical
flow divergence and depth gradients on dynamic objects and
occluded regions. A straightforward solution to this issue is
to exclude dynamic and occluded regions using the auto-
masking technique developed in the study [9] when computing
CGDC and DPC losses. Nonetheless, as illustrated in Fig. 2(c),
this technique is not sufficiently robust, as only the dynamic
objects that are relatively stationary with respect to ego-
motion can be effectively masked [9], and static regions,
especially those with low texture, tend to be overly masked
[49]. Moreover, when the dense correspondence priors are
of low quality due to insufficient iterative updates [18] or
significant domain gaps, directly infusing them into the PCG
stream without further adjustment may even impair depth
estimation performance across all regions.
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Fig. 3. An illustration of the interaction between PCG and CPG streams
through the proposed BSCA strategy to address the challenges posed by
dynamic objects.

To address the aforementioned two challenges simultane-
ously, we propose a simple yet effective BSCA strategy, in
which the PCG stream and CPG stream complement each
other. We unfreeze the pre-trained FlowNet during training
and jointly optimize the optical flow estimated in the CPG
stream and the rigid flow generated in the PCG stream by
minimizing the following loss function:

16
[Fo.o, 1o

L-Ly |FE) - F2 ()]
HW
P

In static regions, optical flow and rigid flow should ideally be
identical, as demonstrated in prior studies [39], [53]. Similar to
the study [39], (16) allows both flows to adjust together with-
out compromising photometric consistency. When DepthNet
has not yet been well trained, dense correspondence priors
can encourage rigid flow in the PCG stream towards more
accurate correspondences. As training progresses, the rigid
flow becomes more reliable than the optical flow in occluded
regions, where the latter is inherently speculative due to the
absence of valid correspondences. (16) then leverages the
rigid flow to refine FlowNet’s predictions in occluded areas,
preventing it from continuously misleading DepthNet. On the
other hand, in dynamic regions, optical flow and rigid flow
should differ significantly. However, the study [39] introduces
an untrained FlowNet to form a joint learning framework,
where both FlowNet and DepthNet are trained by minimizing
the photometric loss. In this training paradigm, since FlowNet
is consistently constrained to capture independent motions,
simultaneously minimizing (16) can cause the DepthNet to be
further misled in dynamic regions. In contrast, we decouple
the FlowNet training from this joint learning framework, gen-
erating prior optical flow using a pre-trained FlowNet, which
is updated solely by (16). As shown in Fig. 3, by ignoring
the photometric consistency constraint on the FlowNet, optical
flow in our CPG stream transitions to “quasi-rigid flow” under
the guidance of the static scene hypothesis in the PCG stream
at the early stage of training. This enables our CGDC and
DPC losses in the CPG stream to be effectively applied across
the entire image, irrespective of static and dynamic regions.
Moreover, as training progresses, photometric loss tends to
mislead DepthNet’s predictions. At this time, (16) counteracts
the misdirection caused by the photometric loss, ensuring that
the DepthNet performs accurately in dynamic regions. We
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TABLE I

QUANTITATIVE COMPARISON WITH SOTA NETWORKS ON THE KITTI [50], DDAD [35], NUSCENES [51] AND WAYMO OPEN [52] DATASETS. THE
BEST RESULTS ARE SHOWN IN BOLD TYPE. THE SYMBOLS T AND | INDICATE THAT HIGHER AND LOWER VALUES CORRESPOND TO BETTER
PERFORMANCE, RESPECTIVELY. ALL MODELS ARE TRAINED WITH MONOCULAR VIDEO SEQUENCES. THE BASELINE MODELS USED
FOR OUR EXPERIMENTS ON EACH DATASET ARE UNDERLINED, RESPECTIVELY

Dataset Method Year Resolution (pixels) Abs Rel | Sq Rel | RMSE | RMSE log | 5 <1.257 5 < 1.252 T 5 < 1.25% T
Monodepth2 [9] 2019 192 x 640 0.115 0.903 4.863 0.193 0.877 0.959 0.981
DIFFNet [8] 2021 192 x 640 0.102 0.764 4.483 0.180 0.890 0.964 0.983
Dynamo-Depth [53] 2023 192 x 640 0.112 0.758 4.505 0.183 0.873 0.959 0.984
SENSE [54] 2023 192 x 640 0.104 0.693 4.294 0.177 0.894 0.965 0.984
KITTI Lite-Mono-8M [14] 2023 192 x 640 0.101 0.729 4.454 0.178 0.897 0.965 0.983
AQUANet [49] 2024 192 X 640 0.105 0.621 4.227 0.179 0.889 0.964 0.984
MonoDiffusion [55] 2024 192 X 640 0.099 0.702 4.385 0.176 0.899 0.966 0.984
RPrDepth [56] 2024 192 x 640 0.097 0.658 4279 0.169 0.900 0.967 0.985
DCPI-Depth (Ours) - 192 x 640 0.095 0.662 4274 0.170 0.902 0.967 0.985
Monodepth2 [9] 2019 384 x 640 0.239 12.547 18.392 0.316 0.752 0.899 0.949
DIFFNet [8] 2021 384 x 640 0.205 12.126 18.461 0.289 0.795 0916 0.957
SC-Depth [45] 2021 384 x 640 0.169 3.877 16.290 0.280 0.773 0.905 0.951
DynamicDepth [57] 2022 384 x 640 0.156 3.305 15.612 0.258 0.785 0.914 0.962
DDAD Lite-Mono [14] 2023 384 x 640 0.161 4.451 16.261 0.271 0.802 0.921 0.962
Lite-Mono-8M [14] 2023 384 x 640 0.175 6.425 16.687 0.272 0.799 0.920 0.961
Dynamo-Depth [53] 2023 384 x 640 0.150 3.219 14.852 0.246 0.798 0.927 0.969
SC-DepthV3 [13] 2024 384 x 640 0.142 3.031 15.868 0.248 0.813 0.922 0.963
DCPI-Depth (Ours) - 384 x 640 0.140 2.866 15.786 0.238 0.815 0.929 0.970
Monodepth2 [9] 2019 288 x 512 0.425 16.592 10.040 0.402 0.723 0.837 0.887
DIFFNet [8] 2021 288 x 512 0.228 5.925 8.897 0.290 0.772 0.905 0.950
MonoViT-tiny [58] 2022 288 x 512 0.412 16.061 10.504 0.385 0.717 0.842 0.898
nuScenes Lite-Mono [14] 2023 288 x 512 0.419 15.578 9.807 0.449 0.720 0.831 0.879
Lite-Mono-8M [14] 2023 288 x 512 0.429 17.058 10.559 0.400 0.709 0.830 0.883
Dynamo-Depth [53] 2023 288 x 512 0.179 2.118 7.050 0.271 0.787 0.896 0.940
DCPI-Depth (Ours) - 288 x 512 0.160 1.736 7.194 0.248 0.793 0.921 0.966
Monodepth2 [9] 2019 320 x 480 0.173 2.731 7.708 0.227 0.797 0.930 0.968
DIFFNet [8] 2021 320 x 480 0.149 2.082 7.474 0.200 0.838 0.956 0.981
Li et al. [59] 2021 320 x 480 0.157 1.531 7.090 0.205 - - -
Waymo Lite-Mono [14] 2023 320 x 480 0.158 2.305 7.394 0.210 0.816 0.944 0.976
Lite-Mono-8M [14] 2023 320 x 480 0.154 2297 7.495 0.209 0.825 0.947 0.975
Dynamo-Depth [53] 2023 320 x 480 0.116 1.156 6.000 0.166 0.878 0.969 0.989
DCPI-Depth (Ours) - 320 x 480 0.116 0.963 5.642 0.162 0.872 0.972 0.991

conduct an ablation study in Sect. IV-E to demonstrate the
effectiveness of this strategy.

IV. EXPERIMENTS

The performance of our proposed DCPI-Depth is evaluated
both qualitatively and quantitatively with extensive exper-
iments in this section. The following subsections provide
details on the utilized datasets, practical implementation,
evaluation metrics, ablation studies, and comprehensive com-
parisons with other SOTA methods.

A. Datasets

We conduct our experiments on six public datasets: KITTI
[50], DDAD [35], nuScenes [51], Waymo Open [52],
Make3D [60], and DIML [61].

For the KITTI [50] dataset, we adopt the Eigen split [5],
which comprises 39,180 monocular triplets for training, 4,424

images for validation, and 697 images for testing. For the
DDAD [35] dataset, we follow the prior work [13] to split
this dataset into a training set of 12,650 images and a test set
of 3,950 images in our experiments. For the nuScenes [51]
dataset, following the study [53], we use 79,760 image triplets
collected by the front camera for model training, and evaluate
the model’s performance on 6,019 front camera images. For
the Waymo Open [52] dataset, as in the study [53], we utilize
76,852 front camera image triplets for training, and 2,216
front camera images for evaluation. For the Make3D [60]
and DIML [61] datasets, since neither stereo image pairs nor
monocular sequences are provided for unsupervised training,
we only use these datasets to quantify the generalizability of
models per-trained on the KITTI dataset.

B. Experimental Setup

Our experiments are conducted on an NVIDIA RTX 4090
GPU with a batch size of 12. Following the study [9], we adopt
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Fig. 4. Qualitative comparisons among Monodepth2, Lite-Mono-8M, and our proposed DCPI-Depth on the KITTI [50] dataset. (a)-(b), (¢)-(d), (e)-(f), and
(g)-(h) demonstrate the robustness of DCPI-Depth in texture-less regions, in texture-rich regions, at static object boundaries, and on dynamic objects, respectively.

DDAD

’ ) N . /

Image
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Lite-Mono

Ours

nuScenes
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Fig. 5. Qualitative comparisons between Lite-Mono and our proposed DCPI-Depth on the DDAD [35], nuScenes [51], and Waymo Open [52] datasets.

a training approach wherein a snippet of three consecutive
video frames is utilized as a training sample. To augment the
dataset, random color jitter and horizontal flips are applied
to the images during model training. To minimize the loss
functions, we employ the AdamW optimizer with an initial
learning rate of 1 x 107* and a weight decay of 1 x 1072. The
learning rate is adjusted using a cosine annealing scheduler
with periodic restarts, decaying from 1 x 10 to 5 x 10~ over
31 epochs. A decay factor of y = 0.9 is applied after each cycle

to ensure gradual reduction in learning rates. Following the
studies [9], [14], the network’s encoder is initialized using pre-
trained weights from the ImageNet database [64]. RAFT [18]
is employed as the FlowNet in our framework to provide dense
correspondence prior. It is pre-trained on the KITTI Flow 2015
[65] dataset, which contains only 200 sets of two consecutive
frames and has a small overlap with the KITTI Eigen
split [5].
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TABLE I

QUANTITATIVE COMPARISON WITH SOTA NETWORKS ON THE KITTI [50] DATASET USING THE IMPROVED KITTI GROUND TRUTH FROM [62] FOR
MODEL TESTING. THE BEST RESULTS ARE SHOWN IN BOLD TYPE. THE SYMBOLS T AND | INDICATE THAT HIGHER AND LOWER VALUES
CORRESPOND TO BETTER PERFORMANCE, RESPECTIVELY. “M” DENOTES TRAINING WITH MONOCULAR VIDEO SEQUENCES, AND
“MS” DENOTES TRAINING WITH BOTH MONOCULAR VIDEO SEQUENCES AND STEREO IMAGE PAIRS. T INDICATES THE RESULTS
ACHIEVED USING THE SAME WEIGHTS IN TABLE I

Method Year Resolution (pixels) Data Abs Rel | SqRel | RMSE | RMSE log | 5 < 1.257 5 < 1.252 1T 5 < 1.25% 1T
Monodepth2 [9] 2019 192 x 640 MS 0.080 0.466 3.681 0.127 0.926 0.985 0.995
DIFFNet [8] 2021 192 x 640 M 0.076 0414 3.492 0.119 0.936 0.988 0.996
RA-Depth [63] 2022 192 x 640 M 0.074 0.363 3.349 0.114 0.940 0.990 0.997
Lite-Mono [14] 2023 192 x 640 M 0.077 0413 3.482 0.119 0.933 0.988 0.997
Lite-Mono-8M ' [14] 2023 192 x 640 M 0.077 0.423 3.527 0.119 0.934 0.988 0.997
SENSE [54] 2023 192 x 640 M 0.071 0.339 3.175 0.109 0.945 0.990 0.998
MonoDiffusion [55] 2024 192 x 640 M 0.073 0.377 3451 0.115 0.935 0.988 0.997
AQUANet [49] 2024 192 x 640 M 0.070 0.285 2.988 0.107 0.948 0.992 0.998
DCPI-Depth7L (Ours) 192 x 640 M 0.066 0.326 3.257 0.107 0.949 0.990 0.997

C. Evaluation Metrics

We employ seven metrics to quantify the model’s perfor-
mance: mean absolute relative error (Abs Rel), mean squared
relative error (Sq Rel), root mean squared error (RMSE), root
mean squared log error (RMSE log), and the accuracy under
specific thresholds (6; < 1.25%, where i = 1,2,3). Detailed
expressions for these metrics can be found in the study [5].

D. Comparison With SoTA Approaches

The quantitative experimental results presented in Table I
demonstrate that DCPI-Depth achieves SoTA performance
across the KITTI [50], DDAD [35], nuScenes [51], and
Waymo Open [52] datasets. Notably, the employed baseline
model, Lite-mono [14], that performs unsatisfactorily on these
datasets, achieves significant performance improvements, with
error reductions ranging from 13.04% to 61.81% on Abs Rel.
This substantial enhancement enables DCPI-Depth to surpass
previous leading methods [13], [53] on each of the respective
datasets, suggesting the effectiveness of our proposed frame-
work.

The qualitative experimental results on the KITTI dataset
are shown in Fig. 4. Our DCPI-Depth exhibits superior
performance compared to previous SoTA methods. This is
particularly evident in texture-less regions, such as (a) and
(b). Additionally, our approach ensures smoother and more
continuous depth changes and generates clearer boundaries,
as exemplified in (c¢) to (f). These improvements are attributed
to the dense correspondence priors infused via our proposed
CGDC and DPC losses within the CPG stream, which pro-
vide refined and direct geometric cues for depth estimation.
Furthermore, DCPI-Depth maintains accurate depth estimation
on dynamic objects, such as (g) and (h), unaffected by inde-
pendent motion. This advantage, observed on dynamic objects,
stems from our BSCA strategy, which not only prevents
the misleading effects of independent motion captured by
the optical flow within the CPG stream but also reinforces
accurate estimations in the early training phase, preserving
them through to the final results. As shown in Fig. 5, the
baseline model performs poorly on the DDAD, nuScenes, and

Waymo Open datasets, but demonstrates dramatic performance
improvements after being trained under our proposed frame-
work, further demonstrating the robustness of DCPI-Depth
across diverse scenarios.

To further investigate the impact of image resolutions and
ground truth quality, We evaluate our network’s performance
using (1) images at a resolution of 320 x 1024 pixels and (2)
the improved ground truth [62] from the KITTI dataset. It can
be observed in Table II and III that DCPI-Depth consistently
achieves SoTA performances compared with existing methods.
Although certain metrics exhibit suboptimal results, potentially
attributable to the inherent limitation of the network back-
bone, the proposed training framework, infused with dense
correspondence priors, demonstrates a marked improvement
in baseline performance and robustness.

To further validate the effectiveness of DCPI-Depth in
leveraging dense correspondence priors, we deploy our frame-
work to SC-DepthV3 [13], which leverages pseudo-depth
to achieve robust and highly reliable depth estimation. This
study also provides a comprehensive protocol for evaluating
depth performance across dynamic objects, static areas, and
full images. As shown in Table IV, DCPI-Depth achieves
significant improvements, outperforming the baseline method
by a considerable margin across all metrics for full image,
static regions, and dynamic regions. Furthermore, we pro-
vide comparisons of learning curves among SC-DepthV1,
SC-DepthV3, and DCPI-Depth. As illustrated in Fig. 6(a),
DCPI-Depth significantly improves depth estimation perfor-
mance compared to SC-DepthV3. These results demonstrate
that the dense correspondence priors additionally incorporated
provide meaningful geometric cues on top of pseudo-depth.
Moreover, it can be observed in Fig. 6(b) that the con-
vergence of the photometric loss is comparable among
all three models. This observation suggests that merely
minimizing photometric loss, which provides an indirect
supervisory signal, presents challenges in further improv-
ing depth estimation performance. In contrast, our approach
provides a more direct and effective constraint for depth
estimation.
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TABLE III

QUANTITATIVE COMPARISON WITH SOTA NETWORKS ON THE KITTI [50] DATASET USING HIGHER-RESOLUTION IMAGES FOR MODEL TRAINING. THE
BEST RESULTS ARE SHOWN IN BOLD TYPE. THE SYMBOLS T AND | INDICATE THAT HIGHER AND LOWER VALUES CORRESPOND TO BETTER
PERFORMANCE, RESPECTIVELY. “M” DENOTES TRAINING WITH MONOCULAR VIDEO SEQUENCES

Method Year Resolution (pixels) Data Abs Rel | Sq Rel | RMSE | RMSE log | 6 <1.2571 5 < 1.252 T 5 < 1.25% T
Monodepth2 [9] 2019 320 x 1024 M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
DIFFNet [8] 2021 320 x 1024 M 0.097 0.722 4.435 0.174 0.907 0.967 0.984
MonoViT-tiny [58] 2022 320 x 1024 M 0.096 0.714 4292 0.172 0.908 0.968 0.984
DaCCN [37] 2023 320 x 1024 M 0.094 0.624 4.145 0.169 0.909 0.970 0.985
SENSE [54] 2023 320 x 1024 M 0.099 0.617 4.079 0.172 0.902 0.968 0.985
MonoDiffusion [55] 2024 320 x 1024 M 0.095 0.670 4.219 0.171 0.909 0.968 0.984
DCPI-Depth (Ours) - 320 x 1024 M 0.090 0.655 4.113 0.167 0.914 0.969 0.985
TABLE IV

QUANTITATIVE RESULTS ON THE KITTI [50] DATASET FOR THE FULL IMAGES, STATIC REGIONS, AND DYNAMIC REGIONS. THE BEST RESULTS ARE
SHOWN IN BOLD TYPE. THE SYMBOLS T AND | INDICATE THAT HIGHER AND LOWER VALUES CORRESPOND TO BETTER PERFORMANCE,
RESPECTIVELY. “M” DENOTES TRAINING WITH MONOCULAR VIDEO SEQUENCES

Region Method Year  Resolution (pixels) ~ Data | AbsRel{  SqRell RMSE] RMSElog{ | 6§ <1.251 &< 1.2524 §<1.25%%
SC-Depth [45] 2021 256 x 832 M 0.118 0.870 4.997 0.197 0.860 0.956 0.981
SC-DepthV?2 [48] 2022 256 x 832 M 0.118 0.861 4.803 0.193 0.866 0.958 0.981
Full Image
SC-DepthV3 [13] 2023 256 x 832 M 0.118 0.756 4.709 0.188 0.864 0.960 0.984
DCPI-Depth (Ours) - 256 x 832 M 0.109 0.679 4.496 0.180 0.878 0.965 0.985
) SC-Depth [45] 2021 256 x 832 M 0.106 0.704 4702 0.170 0.874 0.966 0.989
Sm'm SC-DepthV3 [13] 2023 256 x 832 M 0.108 0.636 4.438 0.163 0.881 0.971 0.991
Regions DCPI-Depth (Ours) - 256 x 832 M 0.101 0.584 4.235 0.156 0.892 0.974 0.991
) SC-Depth [45] 2021 256 x 832 M 0.243 3.890 8.533 0.321 0.689 0.849 0.921
Dymjlmw SC-DepthV3 [13] 2023 256 x 832 M 0.205 2.283 7.356 0.290 0.703 0.884 0.945
Regions DCPI-Depth (Ours) - 256 x 832 M 0.186 1.948 7.028 0.281 0.732 0.895 0.950
0.350 0.350
0.325 1 SC-DepthV1 (Original) 0.3251 SC-DepthV1 (Original)
- | SC-DepthV3 (Original) pe SC-DepthV3 (Original)
DCPI-Depth (Original) DCPI-Depth (Original)
02775 7+t - ~—— —— SC-DepthV1 (Smoothed) @ 0.275 -+ ot —— SC-DepthV1 (Smoothed)
T 02504 i —— SC-DepthV3 (Smoothed) ? 050 —— SC-DepthV3 (Smoothed)
~ —— DCPI-Depth (Smoothed) E ' —— DCPI-Depth (Smoothed)
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S
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Fig. 6. Learning curve comparisons among SC-DepthV1, SC-DepthV3, and our proposed DCPI-Depth on the KITTI [50] dataset: (a) demonstrates that our
DCPI-Depth consistently achieves a lower Abs Rel throughout training compared to other models; (b) illustrates that the convergence of the photometric loss

among these models is comparable.

E. Ablation Studies

Table V presents comprehensive ablation studies conducted
with SC-DepthV3 to validate the effectiveness of our con-
tributed components. The first ablation study validates the
internal design of the CPG stream by comparing the overall

performance with and without the incorporation of the CGDC
loss and DPC loss, respectively. Key findings from this study
include: (1) Incorporating the CGDC loss results in the most
significant performance improvements; (2) The DPC loss also
plays an important role in improving the performance of
our framework. Without the DPC loss, the Abs Rel metric,
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TABLE V

ABLATION STUDIES ON THE KITTI [50] AND THE DDAD [35] DATASETS. THE BEST RESULTS ARE SHOWN IN BOLD TYPE. THE SYMBOLS T AND |
INDICATE THAT HIGHER AND LOWER VALUES CORRESPOND TO BETTER PERFORMANCE, RESPECTIVELY

DepthNet CPG Stream KITTI (Full Image) KITTI (Dynamic Regions) DDAD (Full Image)
BSCA Strategy
Backbone CGDC loss DPC loss Abs Rel | SqRel | 517 5o T Abs Rel | SqRel | 5171 Abs Rel | SqRel | 617 S 1
Baseline 0.118 0.756 0.864 0.960 0.205 2.283 0.703 0.149 3.062 0.798 0.920
v v 0.111 0.698 0.874 0.963 0.193 2.125 0.718 0.143 3.156 0.801 0915
ResNet18 [66] v 0.115 0.716 0.869 0.963 0.201 2.234 0.710 0.148 3.092 0.799 0.921
v 0.113 0.707 0.873 0.964 0.211 2510 0.700 0.145 3.066 0.805 0.919
v v 0.109 0.679 0.878 0.965 0.186 1.948 0.732 0.143 2.963 0.812 0.925
Baseline 0.108 0.696 0.878 0.964 0.197 2.188 0.717 0.145 3.104 0.804 0.922
DIFFNet [8]
v ' v 0.103 0.653 0.886 0.966 0.191 2.098 0.719 0.137 2.812 0.816 0.926
RGB Image w/o CGDC Loss w/o DPC Loss DCPI-Depth (Ours)

Fig. 7. Qualitative results on the KITTI [50] dataset to demonstrate the effectiveness of the CGDC loss and DPC loss.

which measures the relative depth error in a similar way
to the CGDC loss, remains steady. However, other metrics
decrease significantly, especially on the DDAD dataset. Fig. 7
provides quantitative experimental results to demonstrate the
effectiveness of the CGDC and DPC losses. It is obvious
that removing the CGDC loss can lead to significant depth
distribution shifts (see the first and third lines), which aligns
with our expectations. Furthermore, despite achieving satis-
factory quantitative results, removing the DPC loss can result
in erroneous depth estimations in continuous regions such as
vehicles and cyclists, as illustrated in the second to fourth
lines.

Additionally, we conduct another ablation study where we
omit the BSCA strategy while retaining the full configuration
of the CPG stream to validate its efficacy. The quantitative
results reveal a significant decline in performance in dynamic
regions, even falling below that of the baseline network,
while the depth estimation accuracy in static regions remains
unaffected. The qualitative results are provided in Fig. 8. It
can be observed that the moving car exhibits independent
apparent motions in the optical flow provided by the frozen
FlowNet, leading to erroneous depth guidance via triangula-
tion. As a result, the rigid flow eventually tends to contain
the independent apparent motions, and the estimated depth
is farther than the actual. In contrast, the model trained with

the BSCA strategy effectively eliminates independent apparent
motions in both flows for the moving car. This results in more
accurate geometric and contextual-based depth estimations
for the moving car. The above observations are consistent
with our initial motivation for introducing the BSCA strategy,
emphasizing its critical role in improving depth estimation
performance when dynamic objects are involved.

Thirdly, we conduct an ablation study using a better-
performing DepthNet backbone within our full configuration.
The results show that our contributed techniques are compat-
ible with this backbone and consistently achieve significant
improvements. These findings indicate that our contributions
provide distinct advantages that differentiate them from those
provided by more advanced networks and demonstrate the
potential to deliver improvements across a wider range of
models.

Finally, the results achieved by our approach with respect
to different qualities of dense correspondence priors are pre-
sented in Table VI. These results demonstrate that our method
remains highly robust when the dense correspondence priors
are of low quality, particularly when FlowNet undergoes insuf-
ficient iterative updates or is pre-trained solely on synthetic
data. This is because even low-quality dense correspondence
priors can help perceive relative distances among pixels and
reflect depth variations to some extent, thereby providing
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Fig. 8. Qualitative results on the KITTI [50] dataset to demonstrate the effectiveness of the BSCA strategy.

TABLE VI

AN ABLATION STUDY TO DEMONSTRATE THE EFFECTIVENESS OF
OUR APPROACH WITH DIFFERENT DENSE CORRESPONDENCE QUAL-
ITIES, WHERE FLOWNET IS PRE-TRAINED ON DIFFERENT
DATASETS AND APPLIES DIFFERENT NUMBERS OF ITERATIVE
UPDATES [18].THE METRIC “F1-EPE” (PIXELS) QUAN-
TIFIES THE ACCURACY OF OPTICAL FLOW ON THE
KITTI FLow 2015 DATASET, WHERE LOWER VAL-

UES INDICATE BETTER PERFORMANCE. DEPTH
ESTIMATION IS EVALUATED USING THE
KITTI EIGEN SPLIT [5]

Initial Flow Final Flow Depth
Pre-trained Iterative o
Full Image Static Region | Static Region Estimation
Dataset Updates
FI1-EPE F1-EPE FI-EPE AbsRel &1

KITTI Flow 2015 24 0.63 0.66 4.92 0.109  0.878
KITTI Flow 2015 1 1.94 1.95 9.73 0.113  0.871
FlyingChairs 24 10.67 10.30 6.53 0.112  0.872
w/o - - - - 0.118  0.864

valuable guidance during the training of DepthNet. Further-
more, this effectiveness also benefits from the proposed BSCA
strategy, which enables the two types of flow to complement
each other. Such findings are supported by the final quasi-rigid
flow results shown in Table VI. When FlowNet is pre-trained
solely on the synthetic FlyingChairs [67] dataset, the BSCA
strategy effectively refines correspondences in static regions
that are initially affected by either occlusions or domain
gaps. Notably, such improvements may not be reflected in the
utilized evaluation metrics when the FlowNet is pre-trained
on the KITTI Flow 2015 dataset in a supervised manner.
This is because unsupervised training provides FlowNet with
relatively weaker constraints compared to supervised training,
while the KITTI Eigen split [5] used for training differs
significantly in data distribution from the dataset used for
FlowNet pre-training and evaluation. Fortunately, our approach
still helps refine dense correspondence priors across this larger
and more diverse data split, as suggested by the observed
improvement in depth estimation performance.

TABLE VII

QUANTITATIVE RESULTS ACHIEVED USING ADDITIONAL MONOCULAR
DEPTH ESTIMATION MODELS, WITH AND WITHOUT OUR PROPOSED
DCPI-DEPTH FRAMEWORK EMPLOYED. WE USE THE KITTI
EIGEN SPLIT [5] FOR BOTH MODEL TRAINING AND EVALU-
ATION. ALL MODELS ARE TRAINED USING IMAGES AT A
RESOLUTION OF 192 x 640 PIXELS

Method AbsRel SqRel RMSE RMSE log 51 52 43
Monodepth2 [9] 0.115 0.903 4.863 0.193 0.877 0959  0.981
+Ours 0.110 0.749 4.559 0.183 0.879 0962  0.984
Swin-Depth [68] 0.106 0.739 4.510 0.182 0.890 0964  0.984
+Ours 0.104 0.704 4.443 0.180 0.893 0965 0984
DIFFNet [8] 0.102 0.764 4.483 0.180 0.896  0.965 0983
+Ours 0.096 0.670 4.310 0.172 0.901 0966 0.984
Lite-Mono-3M [14] 0.107 0.765 4.561 0.183 0.886  0.963  0.983
+Ours 0.101 0.707 4.447 0.176 0.893 0964  0.984

F. Generalizability Evaluation
We incorporate the CPG stream and the BSCA strat-

egy into existing open-source methods to further demon-
strate the adaptability of our contributions to other SoTA
methods. As shown in Table VII, our proposed stream
and strategy significantly improve the performance of the
original networks across all metrics, which consistently
validates the scalability of our methods, as detailed in
Sect. IV-E.

Finally, we conduct zero-shot experiments on the Make3D
[60] and DIML [61] datasets using the models pre-trained
on the KITTI dataset. As shown in Table VIII, our model
outperforms all other methods across these two datasets,
demonstrating its ability to generalize to new, unseen
scenes.

V. DISCUSSION

Despite the effectiveness of our proposed DCPI-Depth
framework, it also has two main limitations. First, the
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TABLE VIII

QUANTITATIVE RESULTS ON THE MAKE3D [60] AND DIML [61]
DATASETS. ALL MODELS ARE TRAINED ON THE KITTI [50] DATASET
(IMAGE RESOLUTION: 192 X 640 PIXELS)

Dataset Method Abs Rel Sq Rel RMSE RMSE log
Monodepth2 [9] 0.321 3.378 7.252 0.163
HR-Depth [47] 0.305 2.944 6.857 0.157
R-MSFM6 [69] 0.334 3.285 7.212 0.169

Make3D
Lite-Mono [14] 0.305 3.060 6.981 0.158
MonoDiffusion [55] 0.297 2.871 6.877 0.156
DCPI-Depth (Ours) 0.291 2.944 6.817 0.150
Monodepth2 [9] 0.185 0.298 1.140 0.249
HR-Depth [47] 0.183 0.296 1.128 0.248
R-MSFM6 [69] 0.181 0.301 1.132 0.243

DIML
Lite-Mono [14] 0.173 0.271 1.108 0.239
MonoDiffusion [55] 0.166 0.256 1.084 0.232
DCPI-Depth (Ours) 0.163 0.237 1.038 0.226

incorporation of the bidirectional PCG and CPG streams
inevitably increases the computational and memory overhead
during training. Nevertheless, the additional overhead remains
within an acceptable range. The introduced FlowNet, which
contains 5.3M learnable parameters, and loss functions reduce
the training speed from 5.39 it/s to 3.18 it/s. Furthermore,
infusing dense correspondence priors into DepthNet through
the proposed training framework enhances depth estimation
performance while maintaining low computational overhead.
Notably, the method preserves a strict monocular setting
during the inference phase. Second, while our proposed
framework has been shown to be effective when applied to
several SOTA monocular depth estimation models, its potential
when combined with more advanced network architectures,
particularly those based on vision foundation models, remains
underexplored and will be left for future work.

VI. CONCLUSION AND FUTURE WORK

This article presented DCPI-Depth, a novel unsupervised
monocular depth estimation framework with two bidirectional
and collaborative streams: a conventional PCG stream and a
newly developed CPG stream. The latter was designed specif-
ically to infuse dense correspondence priors into monocular
depth estimation. It consists of a CGDC loss to provide
contextual-based depth with geometric guidance obtained from
ego-motion and dense correspondence priors, and a DPC
loss to constrain the local depth variation using the explicit
relationship between the differential properties of depth and
optical flow. Moreover, a BSCA strategy was developed to
enhance the interaction between the two flow types, encour-
aging the rigid flow towards more accurate correspondence
and making the optical flow more adaptable across various
scenarios under the static scene hypotheses. Compared to
previous works, our DCPI-Depth framework has demonstrated
impressive performance and superior generalizability across
six public datasets.

Future work will focus on exploring more advanced optical
flow estimation techniques to enhance the reliability and
generalizability of dense correspondence priors and to extend

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

the techniques in DCPI-Depth into a joint learning framework
where multiple tasks can be explicitly coupled to mutually
enhance each other.
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