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Abstract—Stereo matching has emerged as a cost-effective
solution for road surface 3D reconstruction, garnering signifi-
cant attention towards improving both computational efficiency
and accuracy. This article introduces decisive disparity diffu-
sion (D3Stereo), marking the first exploration of dense deep
feature matching that adapts pre-trained deep convolutional
neural networks (DCNNs) to previously unseen road scenarios.
A pyramid of cost volumes is initially created using various
levels of learned representations. Subsequently, a novel recursive
bilateral filtering algorithm is employed to aggregate these
costs. A key innovation of D3Stereo lies in its alternating
decisive disparity diffusion strategy, wherein intra-scale diffusion
is employed to complete sparse disparity images, while inter-
scale inheritance provides valuable prior information for higher
resolutions. Extensive experiments conducted on our created
UDTIRI-Stereo and Stereo-Road datasets underscore the effec-
tiveness of D3Stereo strategy in adapting pre-trained DCNNs
and its superior performance compared to all other explicit
programming-based algorithms designed specifically for road
surface 3D reconstruction. Additional experiments conducted on
the Middlebury dataset with backbone DCNNs pre-trained on the
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ImageNet database further validate the versatility of D3Stereo
strategy in tackling general stereo matching problems. Our
source code and supplementary material are publicly available
at https://mias.group/D3-Stereo.

Index Terms—Stereo matching, 3D reconstruction, convolu-
tional neural networks, recursive bilateral filtering.

I. INTRODUCTION

NSURING safe and comfortable driving requires the

timely assessment of road conditions and the prompt
repair of road defects [1]. With an increasing emphasis on
maintaining high-quality road conditions [2], the demand
for automated 3D road data acquisition systems has grown
more intense than ever [3], [4]. The study presented in [5]
employs a laser scanner to collect high-precision 3D road
data. Nevertheless, the high equipment costs and the long-term
maintenance expenses have limited the widespread adoption of
such laser scanner-based systems [6]. Therefore, stereo vision,
a process similar to human binocular vision that provides
depth perception using dual cameras, has emerged as a prac-
tical and cost-effective alternative for accurate 3D road data
acquisition [7], [8]. Existing stereo matching approaches are
either explicit programming-based or data-driven. The former
ones rely on hand-crafted feature extraction and estimate
disparities through local block matching or global energy
minimization [9]. Nonetheless, hand-crafted feature extraction
faces challenges in handling varying lighting conditions and
noise. With recent advances in deep learning, researchers
have resorted to deep convolutional neural networks (DCNNs)
for stereo matching [10], [11]. These data-driven approaches
can learn abstract features directly from input stereo images,
making them increasingly favored in this research domain.
Unfortunately, the limited availability of well-annotated road
disparity data restrains the transfer learning of these DCNNs
[12]. Therefore, explicitly programming-based stereo matching
approaches [7], [13], [14] remain the mainstream in the field
of road surface 3D reconstruction.

Building upon the local coherence constraint [15], seed-
and-grow stereo matching algorithms [7], [16], [17] have been
widely utilized for quasi-dense disparity estimation. Given that
road disparities change gradually across continuous regions,
our previously published road surface 3D reconstruction algo-
rithm search range propagation (SRP) [7] initializes disparity
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seeds using a winner-take-all (WTA) strategy at the bottom
row of the image and estimates disparities iteratively with
the search range propagated from three neighboring seeds.
Another significant contribution of [7] lies in the perspective
transformation (PT), designed to convert the target view of the
road image into a reference view. This transformation helps
decrease computations by reducing the disparity search range
and improving stereo matching accuracy by increasing the sim-
ilarity of the compared blocks. While the combination of SRP
and PT yields a remarkable 3D geometry reconstruction accu-
racy of approximately 3 mm, it is noteworthy that the disparity
estimation accuracy remains constrained by the reliability of
the initial seeds generated using the simple WTA strategy.
The unidirectional disparity propagation process further leads
to disparity estimation errors on discontinuities, such as road
defects. Additionally, both seed-and-grow stereo matching and
perspective transformation require a set of sparse yet reliable
initial correspondences, and the density and reliability of these
correspondences directly affect the efficiency and accuracy of
the seed-growing process.

Drawing inspiration from recent advances in plug-and-
play sparse correspondence matching [18], [19] approaches,
we propose a feasible solution to address these limitations.
For example, the deep feature matching (DFM) method [18]
utilizes a backbone DCNN pre-trained on the ImageNet
database [20] to extract feature pyramids for both views, and
subsequently refines the coarse correspondences initialized
at the deepest feature layer to former layers following a
linear hierarchical manner. These methods have demonstrated
the effectiveness of using deep features provided by pre-
trained backbones to solve the correspondence matching task.
Therefore, our primary motivation is to develop a dense deep
feature matching strategy by improving the seed-and-grow
stereo matching with the hierarchical refinement strategy in
DFM. Leveraging accurate sparse correspondences as dis-
parity seeds, such a dense deep feature matching strategy
exhibits compatibility with perspective transformation, thus
leading to improvements in both stereo matching accuracy
and efficiency compared with the combination of SRP and PT.
However, directly incorporating a hierarchical refinement strat-
egy into seed-and-grow stereo matching still has the following
limitations:

e The dense matching process in the stereo matching task
requires additional matching noise elimination operations
in challenging areas with weak/repetitive textures.

e Additional efforts in eliminating inaccurate sparse corre-
spondences are required to mitigate error accumulation
and propagation in the seed-growing process.

e The linear hierarchical refinement strategy in DFM is
designed to enhance the spatial details of the coarse initial
correspondences, while having limited effectiveness in
enhancing their density.

To address these limitations, we propose a plug-and-play
stereo matching strategy for road surface 3D reconstruc-
tion, referred to as Decisive Disparity Diffusion Stereo
(D3Stereo), serving as the first exploration of dense deep fea-
ture matching. D3Stereo is compatible with any hand-crafted
feature extraction approaches, stereo matching networks pre-

1517

trained on other public datasets, and even backbone DCNNs
pre-trained for image classification. We first propose the
recursive bilateral filtering (RBF) algorithm, a more effi-
cient alternative to traditional bilateral filtering (BF) [13] for
matching cost aggregation. By recursively applying a small
filtering kernel, our BRF achieves a significantly expanded
receptive field while maintaining the same computational cost
as BF, thereby gathering more context information for cost
aggregation. The proposed method leverages the powerful
semantic feature extraction ability of a pre-trained DCNN
backbone in a hierarchical manner. It consists of two algo-
rithms that diffuse decisive disparities at both intra and
inter scales, respectively. With a cost volume pyramid built
with different layers of feature maps, we first find coarse
decisive disparities at the deepest layer. Then, the coarse
decisive disparities are adversarially diffused to their neigh-
boring pixels in the same layer to yield a dense disparity
map, within which reliable decisive disparities are inher-
ited into the former layer by checking the matching cost
local minima consistency between consecutive layers. Our
adversarial disparity diffusion process and novel disparity
inheritance strategy help eliminate the inaccurate correspon-
dences initialized at the last layer. Afterwards, the derived
refinement results activate the decisive disparity intra and inter
scale diffusion in the former layer. This process is repeated
until a dense disparity map is obtained at the finest resolution
layer. In general, the combined usage of diffusing decisive
disparities at both intra and inter scales fully exploits the
semantic information at different scales of feature maps, thus
obtaining improved disparity seeds in terms of both accuracy
and distribution uniformity compared with the hierarchical
refinement strategy in DFM [18].

Additionally, we create a synthetic road dataset called the
UDTIRI-Stereo dataset using the CARLA simulator [21] for
disparity estimation evaluation. Although collecting datasets
using simulators has emerged as a prevalent alternative for
real-world datasets [22], [23], these simulators model the road
surface as a ground plane, thereby significantly reducing the
complexity of the stereo matching task. In order to narrow the
domain gap between the idealized road surface in CARLA
and the real-world road surface, we originally augment the
road surface mesh model in CARLA with 1) 2D Perlin noise
and 2) digital twins of pothole models. By applying linear
interpolation between initial random noises, 2D Perlin noise
is utilized to generate the natural undulations of the real-
world road surface. Moreover, digital twins of pothole models
yielded in real-world [6] are randomly transplanted onto the
road surface, thus further introducing disparity discontinuities
into the UDTIRI-Stereo dataset.

II. RELATED WORKS
A. Stereo Matching for Road Surface 3D Reconstruction

Several stereo matching approaches [7], [13], [14], devel-
oped specifically for road surface 3D reconstruction, have
been proposed since 2014 [24]. The first reported effort
in this area of research was our proposed iterative stereo
matching algorithm SRP [7]. Despite the remarkable 3D
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Fig. 1. An illustration of our proposed D3Stereo strategy. Cost volume pyramid is first initialized with RBF. Afterwards, coarse decisive disparities initialized at
the deepest layer are hierarchically propagated into former layers with alternating decisive disparity intra-scale diffusion and inter-scale inheritance algorithms.

geometry reconstruction accuracy yielded by SRP, its row-by-
row disparity propagation process is challenging to implement
in parallel on GPUs. To address this issue, [13] proposed a
GPU-friendly algorithm for road disparity estimation based
on fast bilateral stereo (FBS) that can be embedded in a drone
for real-time road surface 3D reconstruction. Nevertheless, the
bilateral filtering process in FBS is computationally intensive,
especially when a large filter kernel is employed, thus further
increasing the memory burden on the embedded computers. As
a result, semi-global matching (SGM) was used in conjunction
with PT in [14] for road disparity estimation. Experimental
results suggest that SGM outperforms both SRP and FBS when
PT is incorporated. In general, D3Stereo continues the search
range propagation strategy in SRP, while the seed-growing
process is executed within a single instruction multiple data
architecture for better leveraging parallel computing resources.
Additionally, a recursive bilateral filter is proposed for more
efficient cost aggregation compared with FBS.

On the other hand, recent domain generalization-aimed
stereo matching networks [25], [26], [27], [28], [29] achieve
remarkable generalizability across various scenarios. Common
strategies to maintain the performance of stereo matching
networks under scene changes include narrowing the cross-
domain feature inconsistency [26], [28], [29] and enhancing
the ability of DCNNSs to learn more image structure informa-
tion [25]. However, stereo matching in road scenes additionally
emphasizes the ability of networks to handle fine-grained dis-
parity variations compared to general domain adaptation tasks,
and the performance of these domain generalization-aimed
stereo matching networks in road scenes remains unverified.

B. Sparse Correspondence Matching

Conventional hand-crafted sparse correspondence match-
ing approaches [30], [31], [32] first extract keypoints using
explicitly designed local feature detectors and descriptors.
Correspondence pairs are then determined using the near-
est neighbor search algorithm. Although recent data-driven

approaches [33], [34], [35], [36], [37], [38], [39], [40]
have demonstrated significant improvements over hand-crafted
methods, these supervised methods usually demand a large
amount of well-annotated data for model training, resulting
in unsatisfactory performance when applied to new domains
[19]. Moreover, adopting an independent sparse correspon-
dence matching algorithm, regardless of whether it relies
on explicit programming or DCNNs, for seed initialization
leads to increased consumption of memory and computational
resources. Recent plug-and-play approaches, such as DFM
[18] and epipolar-constrained cascade correspondence match-
ing [19], utilize backbone DCNNs pre-trained on the ImageNet
database [20] for sparse correspondence matching based on
a hierarchical refinement strategy, obviating the necessity for
model fine-tuning. Consequently, a preferred solution would be
to opt for plug-and-play algorithms that leverage the backbone
DCNN incorporated into D3Stereo for seed initialization.

III. METHODOLOGY

Based on Markov random field theory [41], stereo matching
can be formulated as an energy minimization problem [7]:

E=Y Dp.d)+ ) V.9,

peD geN,

(1)

where p = [u,v]" denotes a 2D pixel within the disparity map
D, function D(-) measures the stereo matching confidence at
a given disparity d, function V(-) quantifies the compatibility
between p and its neighborhood system N, comprising a
collection of 2D pixels ¢ adjacent to p. As demonstrated
in [42], confident disparities tend to have consistent match-
ing costs regardless of scales. Therefore, drawing inspiration
from the scale-invariant feature detection introduced in [30],
we extend N, to incorporate neighborhood systems of p
across various scales, enabling pyramid stereo matching in
this study. Following [18], we perform stereo matching via
a hierarchical refinement strategy, as illustrated in Fig. 1.
The process of D(:) is accomplished using either conventional

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 26,2025 at 08:20:40 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: THESE MAPS ARE MADE BY PROPAGATION: ADAPTING DEEP STEREO NETWORKS TO ROAD SCENARIOS

explicit programming-based algorithms or pre-trained DCNN
backbones, as detailed in Sect. III-A, while the process of V(-)
is achieved through an intra-scale decisive disparity diffusion
algorithm, and an inter-scale decisive disparity inheritance
algorithm, as detailed in Sects. III-B and III-C, respectively.
Our adopted sparse decisive disparity initialization approach
obviates the necessity for additional keypoint detection and
matching algorithms that are commonly used in conven-
tional seed-and-grow stereo matching methods. Additionally,
the combined use of decisive disparity intra-scale diffusion
and inter-scale inheritance not only ensures the quantity and
distribution uniformity of the estimated disparities but also
significantly enhances stereo matching efficiency.

A. Recursive Bilateral Filtering for Cost Volume
Initialization

In our earlier research [7], we utilized the normalized
cross-correlation (NCC) for stereo matching cost computa-
tion. Nevertheless, recent data-driven algorithms, generally
developed based on DCNNs, have demonstrated superior
performance compared to such explicit programming-based
methods. This is attributed to their capabilities of learning
more informative hierarchical representations, thereby offering
a more effective solution for stereo matching challenges in
complex scenarios. Hence, in this paper, we develop D3Stereo
for both explicit programming-based and data-driven methods.
In this subsection, we detail only the cost volume initialization
using pre-trained DCNN backbones (either the backbones
pre-trained on the ImageNet [20] database for natural image
classification or those embedded in pre-trained deep stereo net-
works). Nevertheless, this procedure can also be accomplished
through explicit block matching.

Given a pair of stereo road images I" and I%, we first extract
a collection of deep feature maps F- = {F%,... F%} and
FR=|F R . F f } at k different resolutions using a pre-trained
DCNN backbone. The feature maps F[L’R generally possess
half the resolution of their shallower adjacent ones FiL_’If. A
cost volume pyramid C = {Cy,...,C;} can be subsequently
obtained by computing the cosine similarity between each pair
of left and right deep feature maps, respectively. The matching
costs in C undergo normalization, with a lower matching cost
indicating a better match.

As a standard step in stereo matching algorithms, we
conduct cost aggregation on the cost volumes to improve the
piece-wise disparity coherency across the support region of
each pixel [43]. It has been mathematically proven that the
function V() in (1) can be formulated through an adaptive cost
aggregation process using a bilateral filter [44]. A larger kernel
size (commonly regarded as the “receptive field”) often brings
improved disparity estimation results. However, increasing
the bilateral filtering kernel size can substantially lead to a
notable increase in computational demands, thereby imposing
significant memory pressure on parallel computing resources.

A prevalent trend in network architecture design lies in
replacing a large convolution kernel with stacked small ones
[45]. While possessing the same receptive field size, stacked
small kernels exhibit lower computational complexity and
greater network depth compared to a single large kernel.
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Motivated by this network architecture design, we introduce a
recursive bilateral filtering algorithm for memory-efficient cost
aggregation as follows:

> K(@C V(p.d)
quij{p]

Y. Kig ’

‘IENFJU{P}

" (p,d) =

2

where p is a 2D pixel in C;, d represents a disparity candidate
at p, Cl(f) represents the i-th cost volume after the z-th RBF
iteration with Cl(.o) = C;. In the RBF kernel:

_allb? (I (p) - IE(a))
p-al’ e -t@’]

Ki(q) = exp

gl (%]

N, denotes a neighborhood system of p (the RBF kernel
radius «x, = 1 corresponds to an eight-connected neighborhood
system) at the i-th scale, Il-L denotes a downsampled I with
the same resolution as F%, o, and o, denote weighting
parameters related to spatial distance and color similarity,
respectively. As discussed in [46], executing fm,x iterations of
bilateral filtering with a 3 x3 kernel is functionally equivalent,
in terms of receptive field size, to performing the filtering
process once, but with a 2fnax + 1) X 2fmax + 1) kernel.
The computational consumption ratio of traditional bilateral

filtering versus our proposed RBF is $(4tmax—|— t# —|—4),

which shows a monotonic increase when #,,x > % Moreover,
it has been mathematically proven in [47] that for a stack
of convolutional layers, the weights of each pixel within its
theoretical receptive field adhere to a Gaussian distribution.
This concept naturally translates to the recursive structure of
our proposed RBF. Therefore, with the same computational
complexity, our proposed RBF can produce a larger receptive
field adhering to a Gaussian distribution, thereby gathering
more context information for cost aggregation. In addition, in
practical implementations, the GPU memory needs are reduced
by a factor of $(4tfnax + 4tmax + 1) when using our proposed
RBF, significantly optimizing the memory resource usage.

B. Intra-Scale Decisive Disparity Diffusion

As illustrated in Fig. 1, D3Stereo strategy is initialized
with a collection of coarse decisive disparities, determined
by measuring the peak ratio naive (PKRN) [48] scores and
checking the left-right disparity consistency (LRDC) [7] at
the k-th layer, as employed in DFEM [18]. This process results
in Df, a sparse disparity map with the lowest resolution.
The linear hierarchical refinement structure employed in DFM
has been proven to dramatically improve the stereo match-
ing efficiency. However, the resulting disparity map is often
quasi-dense, comprising a set of disparity clusters originating
from a single initial decisive disparity. To address this issue,
we introduce an intra-scale decisive disparity diffusion pro-
cess positioned between two successive inter-scale refinement
processes, denoted by an alternating hierarchical refinement
structure (ARS). This novel contribution helps densify the
sparse depth information initialized by the PKRN dense search
process, thereby improving both the quantity and distribution
uniformity of decisive disparities while retaining the efficiency

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 26,2025 at 08:20:40 UTC from IEEE Xplore. Restrictions apply.



1520

Algorithm 1 Intra-Scale Decisive Disparity Diffusion

Input: Cost volume C; and decisive disparity map D7
Output: Disparity map D);
1 Initialize an empty set P to store the candidates for
intra-scale decisive disparity diffusion;
2 D; «+ D7} ;
3 for p whose neighboring pixel q is determined to have a
decisive disparity do

4 ‘ P+ PU{pk

5 repeat

6 for p € P do

7 P+ P—-{p};

8 Calculate its state s* >Z using (4);

9 if its state satisfies hypotheses (2) and (3), or the
adversarial mechanism condition in (5) then

10 ‘ D(p)%s(tiandPHfPUN,

11 until no more pixels experience state changes;

gains achieved by the linear hierarchical refinement strategy
in DFM. Our proposed intra-scale decisive disparity diffusion
algorithm is developed based on the following hypotheses:
(1) disparities change gradually across continuous regions;
(2) the matching cost of a desired disparity is a local
minima;
(3) disparities between stereo images are consistent.
We define a disparity state variable sz for p in the #-th
iteration of decisive disparity diffusion when estimating the
i-th disparity map D; (i € [1,k]NZ) as follows:

(r)‘ _ argmln {C (. 9)ls € O U {Dgz—l)(q) + r})}, 4
qeN,,

where r € [—7,7] N Z denotes the disparity search tolerance,
in which 7 € Z represents the disparity search bound, the
neighborhood system N,; for disparity diffusion has a radius
Kds CD() represents an operation to uniquify a given set,
and Dt Y denotes the disparity map obtained after the

(t = 1)- th iteration with DY = Df, and D = D¥ (i < k)
and are derived from the inter-scale reﬁnement process at
the i-th layer. The disparity state variable sg) that fulfills the
hypotheses (2) and (3) mentioned above is considered to be
decisive. Afterwards, the newly generated decisive disparities
are identically utilized to propagate disparity ranges to their
neighborhood systems in the next iteration, corresponding
to an ongoing process of depth information completion.
To improve computational efficiency, we confine the intra-
scale decisive disparity diffusion process only to the pixels
whose neighborhood system has experienced state changes
in the previous iteration. Moreover, unlike the conventional
unidirectional seed-growing process, we also incorporate an
adversarial mechanism into our intra-scale decisive disparity
diffusion process to update disparities that may have been
determined incorrectly in the previous iterations. Specifically,
if a pixel satisfies the following condition:

min{Ci(p, sO)Nj e 0,1 - ]mz} <

min{c,-(p, s (| (DI g + r})}, )
geN,i
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Fig. 2. An illustration of the inter-scale decisive disparity inheritance process.
Each match proposal is mapped into a pair of patches with a size of 2 x 2
pixels at the former layer, comprising eight fine-grained match candidates.

its disparity will be updated accordingly. This mechanism
helps reduce the occurrence of incorrect disparities in the
subsequent inter-scale decisive disparity inheritance process.
Intra-scale decisive disparity diffusion terminates when no
more pixels experience state changes (namely s(t). = s([ 1))
resulting in a dense disparity map D;. Additional detalls on our
proposed intra-scale decisive disparity diffusion strategy are
provided in Algorithm 1. Moreover, perspective transformation
is performed using the k-th dense disparity map Dy, thereby
narrowing the disparity search range and enhancing the block
matching similarity.

C. Inter-Scale Decisive Disparity Inheritance

The robustness of stereo matching using feature maps from
deeper layers has been demonstrated in effectively addressing
ambiguities, e.g., repetitive patterns and texture-less regions
[49]. This can be attributed to the richer semantic information
within these feature maps generated through larger receptive
fields [19]. In contrast, feature maps from shallower layers
focus on capturing local texture information and fine-grained
details, and thus are more sensitive to pixel intensity changes.
They help in identifying small details, e.g., edges and surface
textures [14]. Therefore, in this study, after estimating decisive
disparities at the lowest resolution, we perform a series of
inter-scale decisive disparity inheritance and intra-scale deci-
sive disparity diffusion operations alternately until we obtain a
dense disparity map D, at the highest resolution. This strategy
incrementally introduces fine-grained details into the disparity
map.

In Patch2Pix [50], each coarse match proposal /\/l,f’R =
{pL.pR} (determined by a decisive disparity in Dj) is
expanded into a pair of patches with a resolution of 25! x 2¢~1
pixels at the 1-st layer. All features from the layers {1,...,k}
that correspond to pf’R within the patches are concatenated into
a single feature vector, which is then fed to two regressors to
determine the correspondence matching confidence. However,
the simple concatenation operation may not fully exploit
the fine-grained details present in the shallower layers, as
features at deeper layers often have higher dimensions. To
overcome this limitation, DFM [18] employs a hierarchical
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Algorithm 2 Inter-Scale Decisive Disparity Inheritance

Input: Cost volume C'; and disparity map D;41
Output: Disparity map D7
1 for piLﬁf corresponding to a decisive disparity in D1 do

2 Initialize SiL’R and gf'R;
3 if Sf B and QiL B satisfy the patch reliability constraint
stated in (6) then

. : - L L R R

4 for co-row pixels p;; € S;” and p;* € S;* do

5 if piL and pf satisfy the local minima
constraint stated in (8) then

6 | DI(p!) « llpf — Pl

refinement strategy to incrementally introduce fine-grained
details into sparse correspondence matching. Specifically, in
DFM, a pair of correspondences p’, | and pf | matched at
the (i + 1)-th layer (i < k) are mapped into a pair of patches
SR = Apif. .. P} with a size of 2 x 2 pixels at the
i-th layer. Matches between SiL’R are subsequently determined
via PKRN and LRDC, as introduced in Sect. III-B. However,
the PKRN-based hierarchical refinement constraint in DFM
has two significant drawbacks: (1) determining satisfactory
matches with PKRN and LRDC is not always effective and
robust due to the limited matching candidates, resulting in
error accumulation and propagation from earlier stages to later
stages; (2) PKRN requires a manually set threshold for each
layer, which decreases its applicability and requires a manual
algorithm tuning step.

This study focuses entirely on stereo matching, which is

a 1D search problem. Therefore, the hierarchical refinement
process aims at determining accurate matches between pixels
in two co-Tow sets: Sft’R = {pi’lR,pf’zR} and SféR = {pfék,pff},
as illustrated in Fig. 2. The subscripts ¢ and b denote the sets
on the top and bottom rows, respectively. Following the intra-
scale decisive disparity diffusion criteria stated in Sect. III-B,
we first analyze the reliability of the given patch pair based
on the following hypotheses:

(1) disparities and matching costs within the patch are
similar in continuous regions;

(2) the average of matching costs within the patch is lower
than the minimum matching costs on the two sides of
the patch, which is inherited from the match proposals
that satisfy the local minima constraint.

We denote two sets that store the pixels on the left and right
sides of Sft’R and SfI;R as g,.f;R = {pi’lR - [1,O]T,pf’2R +1[1,01"}
and Qif,;R = {pf’f - [l,O]T,pfglR + [1,0]7}, respectively, as
visualized in Fig. 1. SiL R is considered reliable when it satisfies
the following patch reliability constraint (PRC):

mean{@(S;;, S5), O(S},. Sf)y)} <

L

min {O(SE, GR), O(SL,. G& )}, ©)
where
oLV = | min {Cipk Ik - pRIDIPE € VE) ()
prevy

in which Vf’R denotes two input pixel sets. Otherwise, the
given match proposal is considered unreliable and all pixels
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within S"* are abandoned. We then identify decisive dispari-
ties within the reserved SiL’R, if it satisfies the following local
minima constraint:

Ci(PiL, d) <min {{Ci(pf‘,d + 9)ls € {-1, 1}}U
min {O(S5, GR), 0(Sh, GE)} ). ®)

The combined use of patch-based local minima constraint and
search range propagation [7] in (8) ensures a more critical
determination for inter-scale decisive disparity inheritance,
resulting in improved accuracy at the cost of reduced quantity.
A sparse disparity map D? is then obtained. It is noteworthy
that both the patch reliability and local minima constraints
are bidirectional as in the LRDC [7], and we only provide
the left-to-right expressions in (6) and (8) for brevity. Addi-
tional details on our proposed inter-scale decisive disparity
inheritance strategy are provided in Algorithm 2.

IV. EXPERIMENTAL RESULTS

A. Datasets, Implementation Details, and Evaluation Metrics

Three datasets are used in our experiments:

(1) UDTIRI-Stereo: Our proposed UDTIRI-Stereo dataset
consists of 3,000 pairs of stereo images (resolution:
720 x 1,280 pixels), along with their disparity ground
truth, collected across 12 scenarios under different illu-
mination conditions (middle sunlight, intense sunlight,
and street lighting at dark), weather conditions (tidy and
watered), and road materials (asphalt and cement). We
introduce random 2D Perlin noise and digital twins of
real-world potholes to the road data.

(2) Stereo-Road [7]: This dataset provides 71 pairs of well-
rectified stereo road images (resolution: 609 x 1,240
pixels), collected in Bristol, UK.

(3) Middlebury [51]: This dataset comprises 15 pairs of
stereo images along with their corresponding disparity
ground truth, collected across various indoor scenes.

We first validate the effectiveness of adapting stereo match-
ing DCNNs (without any model fine-tuning), including PSM-
Net [10], AANet [52], BGNet [53], LacGwc [54], GMStereo
[55], CreStereo [23], and two domain generalization-aimed
networks, GraftNet [28] and HVTStereo [26], pre-trained
on the KITTI Stereo dataset [56] and SceneFlow dataset
[57], using our proposed D3Stereo strategy for road dis-
parity estimation. Additionally, we compare our proposed
D3Stereo matching algorithm (abbreviated as PT-D3Stereo),
which employs NCC along with PT for cost volume pyra-
mid construction, with three state-of-the-art (SoTA) explicit
programming-based stereo matching algorithms: PT-SRP [7],
PT-FBS [13], and PT-SGM [14], developed specifically for
road surface 3D reconstruction. The above two experiments
were conducted on the UDTIRI-Stereo and Stereo-Road
datasets. Moreover, we employ the same experimental setups
to conduct additional experiments on the Middlebury dataset to
further demonstrate the effectiveness of our proposed D3Stereo
strategy for general stereo matching. Finally, D3Stereo is
applied to backbone DCNNs pre-trained on the ImageNet
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EPE (Pixel)

EPE (Pixel)

(b) Middlebury Dataset

Fig. 3. Experimental results regarding hyperparameter selection for decisive
disparity diffusion.

database for demonstrating its compatibility with general-
purpose backbone DCNNs. All experiments were conducted
on an NVIDIA RTX 4090 GPU.

Since the UDTIRI-Stereo and Middlebury datasets provide
disparity ground truth, we adopt end-point error (EPE) and
percentage of error pixels (PEP) with a tolerance of ¢ pixels
for performance quantification. For experiments conducted on
the Stereo-Road dataset, we first warp the right images into
the left view using the estimated disparity maps, and then
calculate the structural similarity index measure (SSIM), mean
squared error (MSE), and peak signal-to-noise ratio (PSNR)
metrics between the original left images and generated images
to quantify the accuracy of the stereo matching algorithms.

B. Hyperparameter Selection in Decisive Disparity Diffusion

We provide details on the selection of disparity search bound
7 and diffusion neighborhood radius «; used in the intra-scale
decisive disparity diffusion process. The EPE and runtime of
stereo matching with respect to different T and «; are given in
Fig. 3. It can be observed that setting 7 = x; = 1 results in the
best overall performance in stereo matching, and increasing
7 and «; leads to a noticeable increase in both the EPE and
runtime. This phenomenon can be attributed to the introduction
of more unreliable disparity candidates when using higher
and «; during decisive disparity diffusion.

C. Ablation Study

We first conduct an ablation study to evaluate the cost
aggregation efficiency between RBF and BF, and their impacts
on stereo matching accuracy. As discussed in Sect. III-A, BF
with k, = 4 has an identical receptive field compared to RBF
with #n.x = 4, and has identical theoretical computational
complexity compared to RBF with #,,x = 9. Therefore, we
compare the performance of eight stereo matching networks
using RBF and BF with these three parameter settings, as
presented in Fig. 4. It can be observed that with an identical
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PSMNet

PSMNet

AANet HVTStereo AANet HVTStereo

BGNe BGN£t

(fraftNet

LacGwe CreStereo LacGwe CreStereo

GMStereo GMStereo
EPE (Pixel) Runtime (s)
(a) UDTIRI-Stereo Dataset
PSMNet PSMNet

AANet HVTStereo AANet HVTStereo

5

BGNe

GraftNet (raftNet

LacGwe CreStereo LacGwce CreStereo

GMStereo
EPE (Pixel)

GMStereo

Runtime (s)
(b) Middlebury Dataset

RBF with tjpax = 9 mmmm RBF with ¢, =4  msss BF with k, =4

Fig. 4. Comparisons between RBF and RF when having identical computa-
tional complexity or an identical receptive field.

receptive field, our RBF with #,,,x = 4 witnesses significantly
improved cost aggregation efficiency while leading to slightly
decreased stereo matching accuracy, compared to BF with
k, = 4. We attribute this accuracy gap to the low effectiveness
of small filtering kernels in RBF in aggregating matching costs
between long-distance pixels. Specifically, the small kernels
are unable to establish direct interactions between pixels
with similar disparities and intensities but at long distances,
thus making RBF less effective in areas with intense texture
variations. However, with identical theoretical computational
complexity, BRF with #,,,,x = 9 exhibits superiority in both cost
aggregation efficiency and stereo matching accuracy. These
improvements can be attributed to RBF’s recursive filtering
process, which expands the receptive field to aggregate match-
ing costs from more related pixels. Additionally, the smaller
filtering kernel in RBF results in decreased computations in the
weighting initialization process compared to BF. In general,
our proposed RBF strikes a better balance between stereo
matching accuracy and cost aggregation efficiency compared
to BE.

We conduct another ablation study to determine the essential
components of D3Stereo strategy. The baseline setup includes
the PKRN-based hierarchical refinement constraint and linear
hierarchical refinement structure used in the DFM [18], and
the traditional BF. As shown in Table I, D3Stereo with all these
components achieves the highest stereo matching accuracy
on both datasets. Secondly, PT significantly improves both
the stereo matching accuracy and efficiency, being consistent
with the findings in [7]. Additionally, RBF improves stereo
matching when combined with any of the components. Specif-
ically, EPE decreases by 23.7-40.9% on our UDTIRI-Stereo
dataset and 5.7-16.2% on the Middlebury dataset. Although
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TABLE 1

ABLATION STUDY ON THE ESSENTIAL COMPONENTS OF D3STEREO
STRATEGY. | REPRESENTS THAT LOWER VALUES CORRESPOND TO
BETTER PERFORMANCE. T REPRESENTS THAT HIGHER VALUES
CORRESPOND TO BETTER PERFORMANCE. THE BEST RESULTS
ARE SHOWN IN BOLD TYPE

(a) Experimental results on the UDTIRI-Stereo dataset.

PEP (%) | . .
PT PRC RBF ARS EPE (pixel)] Runtime (s)J

6=0.5 o=1

10.5 3.57 0.48 0.79
v 9.15 3.27 0.38 0.62
vV Vv 9.13 3.22 0.37 0.64
v v 9.22 251 0.29 091
v v 9.60 3.64 0.44 0.59
v v Vv 454 223 0.28 0.94
v v Vv 364 137 0.26 0.90
vV Vv v 831 275 0.35 0.61
v v Vv v 353 120 0.21 0.84

(b) Experimental results on the Middlebury dataset.

PEP (%) | . .
PRC RBF ARS EPE (pixel)l Runtime (s) |
6=1 =2
343 24.0 4.07 1.11
v 342 238 3.75 1.03
v 252 17.6 3.41 1.89
v 344 238 4.17 0.94
v v 252 174 3.15 1.90
v v 254 178 3.46 1.77
v v 331 228 3.39 0.96
v v v 249 171 2.97 1.58

RBF increases the runtime of D3Stereo by over 50% on the
Middlebury dataset, this increase is lower to 35% on our
UDTIRI-Stereo dataset when used in conjunction with PT,
which significantly reduces the stereo matching search range.
Finally, the collaboration between our introduced PRC and
the ARS leads to improvements in both the stereo matching
accuracy and efficiency. However, when used alone, they either
improve only disparity estimation accuracy or efficiency while
decreasing the other.

We further validate the effectiveness of our introduced
PRC and the alternating hierarchical refinement structure. The
percentage of error pixels and invalid pixels of decisive dis-
parities in Df yielded using different hierarchical refinement
strategies are provided in Fig. 5, where y represents the PKRN
threshold in the decisive disparity initialization process at
the k-th layer. Our observations indicate that the alternating
structure considerably increases the quantity of decisive dis-
parities while leading to decreased accuracy. In contrast, our
introduced PRC significantly enhances the accuracy of the
decisive disparities, albeit with a decrease in their quantity.
However, when these two components are used jointly, both
the quantity and reliability of decisive disparities are signif-
icantly improved. While the quantity of decisive disparities
obtained using our alternating hierarchical refinement strategy
is lower than that achieved by DFM, our structure ensures
a more uniform distribution of decisive disparities, resulting
in improvements in both disparity estimation accuracy and
efficiency in D3Stereo. Moreover, our hierarchical refinement
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Fig. 5. Quantitative results of Df yielded with different hierarchical refine-
ment structures and constraints.

strategy is significantly less sensitive to the impact of 7,
demonstrating better adaptivity compared to DFM.

D. Comparisons With SoTA Algorithms for Road Surface 3D
Reconstruction

The quantitative and qualitative experimental results on
our created UDTIRI-Stereo dataset are presented in Table II
and Fig. 6, respectively. It is noticeable that when applying
our proposed D3Stereo strategy to the existing stereo match-
ing algorithms, EPE and PEP decrease by up to 63.10%
and 83.26%, respectively. Although CreStereo demonstrates
comparable performance in PEP with ¢ = 1 when adapted
to the UDTIRI-Stereo dataset using D3Stereo strategy, it
shows dramatic improvement in PEP with 6 = 0.5 and EPE.
Moreover, PT-D3Stereo diffuses decisive disparities across
the entire image in a multi-directional fashion. This results
in significantly improved disparity estimation results and a
more uniform distribution of errors compared to other explicit
programming-based stereo matching algorithms.

Secondly, the quantitative and qualitative experimental
results on the Stereo-Road dataset are presented in Table III
and Fig. 7, respectively. It is observed that the D3Stereo
strategy can improve all algorithms across different evaluation
metrics, with increases ranging from 0.41% to 10.63% in
PSNR and 0.97% to 13.15% in SSIM, as well as a decrease
ranging from 4.19% to 54.98% in MSE. Additionally, we
observe that by using the D3Stereo strategy, disparity estima-
tion near or on discontinuities can be significantly improved,
as highlighted with green dashed boxes in Fig. 7.

It is noteworthy that GraftNet and HVTStereo achieve
similar stereo matching accuracy on road scenes compared
to stereo matching networks without additional domain
generalization designs. Additionally, applying D3Stereo to
both GraftNet and HVT-Stereo yields improved stereo match-

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 26,2025 at 08:20:40 UTC from IEEE Xplore. Restrictions apply.



1524

(a) Comparison among SoTA explicit programming-based disparity estimation algorithms developed specifically for road surface 3D reconstruction.

TABLE I
EXPERIMENTAL RESULTS ON THE UDTIRI-STEREO DATASET. THE BEST RESULTS ARE SHOWN IN BOLD TYPE

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

Method PEP (%) ¥ EPE (pixel) | PSNR (dB) 1 MSE | SSIM 1
6=0.5 =1

PT-SRP [7] 43.2 33.0 1.27 33.01 52.12 0.867

PT-FBS [13] 33.7 10.2 0.75 32.87 48.80 0.895

PT-SGM [14] 7.17 4.13 0.72 32.50 41.12 0.932

PT-D3Stereo (Ours) 5.90 2.99 0.65 33.14 42.58 0.951

(b) Comparisons of SoTA stereo matching networks without and with our proposed D3Stereo strategy applied.

PEP (%) |

Method EPE (pixel) | ~ PSNR (dB) 1 MSE | SSIM 1
6=0.5 =1
PSMNet [10] 46.7 132 0.84 32.36 55.51 0.894
PSMNet+D3Stereo (Ours) 4.81 2.21 0.31 34.75 32.80 0.953
AANet [52] 35.4 8.69 0.56 34.01 38.14 0.932
AANet+D3Stereo (Ours) 11.1 1.79 0.43 34.21 36.49 0.948
BGNet [53] 12.7 1.51 0.26 34.59 36.10 0.948
BGNet+D3Stereo (Ours) 3.53 1.20 0.21 34.72 34.07 0.954
LacGwe [54] 18.6 2.87 0.36 34.45 36.91 0.945
LacGwc+D3Stereo (Ours) 4.61 2.01 0.37 34.61 34.28 0.953
GMStereo [55] 23.6 4.12 0.43 32.66 47.39 0.937
GMStereo+D3Stereo (Ours) 3.91 1.46 0.31 34.66 33.48 0.953
CreStereo [23] 6.02 1.41 0.40 34.77 34.85 0.950
CreStereo+D3Stereo (Ours) 4.58 1.50 0.34 34.60 33.87 0.952
GraftNet [28] 20.9 2.78 0.33 34.72 36.69 0.943
GraftNet+D3Stereo (Ours) 4.25 1.34 0.22 35.17 32.35 0.951
HVTStereo [26] 6.83 1.95 0.36 34.75 35.65 0.937
HVTStereo+D3Stereo (Ours) 4.91 1.67 0.26 34.79 31.11 0.951
PSMNet GMStereo

Left Road Image

SoTA Stereo Matching DCNNs

Conventional Explicit Programming-based Stereo Matching Methods

PT-FBS AANet CreStereo
Disparity Ground Truth
Disparity (Pixel)
L
0 100 200 PT-SGM BGNet GraftNet
Disparity Error (Pixel)
Ce—
0 0.5 1.0 >1
PT-D3Stereo (Ours) LacGwe HVTStereo X
w/o D3Stereo w/ D3Stereo (Ours) w/o D3Stereo w/ D3Stereo (Ours)

Fig. 6. Examples of disparity estimation results on our created UDTIRI-Stereo dataset.

ing accuracy in all metrics on both the UDTIRI-Stereo
and Stereo-Road datasets. These results indicate a consid-
erable domain gap between road scenes and other common
indoor/outdoor scenes, and further demonstrate the superiority
of D3Stereo in solving the road surface 3D reconstruction task.
Additionally, we notice from the above experimental results

that explicit programming-based algorithms developed specif-
ically for road surface 3D reconstruction yield comparable
performance to the DCNNs pre-trained on the KITTI Stereo
2015 dataset. Specifically, PT-D3Stereo outperforms most
DCNNs without applying D3Stereo strategy in the majority of
cases. These results suggest that the generalizability of SoTA
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Fig. 7. Examples of stereo image reconstruction results on the Stereo-Road dataset.

TABLE III

EXPERIMENTAL RESULTS ON THE STEREO-ROAD DATASET [7]. THE BEST
RESULTS ARE SHOWN IN BOLD TYPE

(a) Comparison among SoTA explicit programming-based disparity estimation
algorithms developed specifically for road surface 3D reconstruction.

Method PSNR (dB) + MSE | SSIM 1
PT-SRP [7] 30.82 68.91 0.909
PT-FBS [13] 30.83 68.14 0911
PT-SGM [14] 30.08 74.80 0.906
PT-D3Stereo (Ours) 31.00 63.37 0.930

(b) Comparisons of SoTA stereo matching networks without and with our
proposed D3Stereo strategy applied.

Method PSNR (dB) 1 MSE | SSIM
PSMNet [10] 28.68 1225 0.829
PSMNet+D3Stereo (Ours) 31.73 55.15 0.938
AANet [52] 29.79 90.49 0.885
AANet+D3Stereo (Ours) 31.34 60.50 0.931
BGNet [53] 31.46 59.67 0.928
BGNet+D3Stereo (Ours) 31.65 56.17 0.937
LacGwe [54] 31.32 62.02 0.923
LacGwc+D3Stereo (Ours) 31.70 5543 0.938
GMStereo [55] 30.98 67.10 0.915
GMStereo+D3Stereo (Ours) 31.61 56.34 0.937
CreStereo [23] 31.44 60.25 0.927
CreStereo+D3Stereo (Ours) 31.57 57.05 0.936
GraftNet [28] 30.88 65.91 0917
GraftNet+D3Stereo (Ours) 31.71 55.50 0.937
HVTStereo [26] 31.43 59.10 0.933
HVTStereo+D3Stereo (Ours) 31.63 56.32 0.938

DCNNE s is still not sufficiently satisfactory for road disparity
estimation. When applying our proposed D3Stereo strategy to
DCNNSs, a SoTA performance is achieved.

E. Generalizability Evaluation for General Stereo Matching

We further evaluate the generalizability of D3Stereo strategy
for general stereo matching using the Middlebury dataset.
The quantitative and qualitative experimental results are

TABLE IV

EXPERIMENTAL RESULTS OF SOTA DCNNS ON THE MIDDLEBURY
DATASET. THE BEST RESULTS ARE SHOWN IN BOLD TYPE

Method PEP (%) ¥ EPE (pixel) |
=1 6=2
PSMNet [10] 53.5 25.7 533
PSMNet+D3Stereo (Ours) 34.1 23.6 4.01
AANet [52] 38.9 27.2 6.62
AANet+D3Stereo (Ours) 31.8 21.2 4.39
BGNet [53] 27.1 19.8 4.28
BGNet+D3Stereo (Ours) 249 17.1 2.97
LacGwe [54] 27.4 17.1 4.35
LacGwc+D3Stereo (Ours) 259 18.2 4.07
GMStereo [55] 29.7 19.3 3.39
GMStereo+D3Stereo (Ours) 273 18.8 3.27
CreStereo [23] 31.2 22.1 3.77
CreStereo+D3Stereo (Ours) 28.6 19.5 3.33
GraftNet [28] 22.7 12.3 2.67
GraftNet+D3Stereo (Ours) 23.1 15.6 3.01
HVTStereo [26] 21.1 11.8 2.16
HVTStereo+D3Stereo (Ours) 30.5 21.4 3.35

presented in Table IV and Fig. 1 in the supplementary
material, respectively. The quantitative results suggest that
domain generalization-aimed networks, GraftNet and HVT-
Stereo, achieve higher stereo matching accuracy on the
Middlebury dataset. However, for stereo matching networks
without any domain generalization functionality incorporated,
applying D3Stereo strategy to these DCNNSs results in signif-
icantly improved stereo matching accuracy. Specifically, the
EPE decreases by 3.54-33.69%, while the PEP with 6 = 1
and ¢ = 2 decreases by 2.59-36.26% except for LacGwc,
which achieves slightly lower PEP with 6 = 2 compared
with LacGwc without using D3Stereo strategy. The qualitative
results indicate that these pre-trained DCNNs perform poorly
in ambiguous regions where color intensities are similar,
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TABLE V

EXPERIMENTAL RESULTS OF FOUR BACKBONE DCNNS PRE-TRAINED ON THE IMAGENET [20] DATABASE. H AND W DENOTE THE HEIGHT AND WIDTH
OF THE INPUT IMAGE, RESPECTIVELY

UDTIRI-Stereo dataset Middlebury dataset

Backbones Sizes of the selected feature maps
EPE (pixel)] Runtime (s)| EPE (pixel)] Runtime (s)J
[(8,%,128), (4,¥.256)] 0.261 0.92 3.95 1.50
VGG [45] [(4,%.128), (4,%.256), (4,¥,512)] 0.241 0.96 3.75 1.52
(5. 5.128), (4,%.256), (§.%.512), ({5.7%5.512)] 0.242 0.91 3.77 1.37
(4. %.64), (4. Y .64)] 0.314 0.84 4.02 1.22
ResNet [58] [(H.%.64), (8. %.64), (2, %,128)] 0.309 0.81 3.88 1.06
(8. %.64), (4, % .64), (2,%.128), ({£,7%.256)] 0.309 0.82 4.07 1.08
(4. %.16), (4, % 24 0.672 0.87 4.67 1.17
MobileNetV3 [59]  [(4.%.16), (4.5 .24). (4.¥.40)] 0.573 0.84 4.54 1.12
[(H.¥.16), (8,5 24), (¥ 40), (£, 112)] 0.562 0.81 4.48 1.08
[(4.%.16), (4.¥.16)] 1.412 0.89 7.23 1.05
MobileNetV3-S [59] [(2.¥.16), (2. ¥.16), (£, ¥ 24)] 1.357 0.82 6.4 0.96
[(4.%.160)., (4.%.16), (4.¥.24), ($. 7% 48)] 1.366 0.81 6.29 1.01

without any further model fine-tuning. In contrast, their per-
formance improves with the use of D3Stereo strategy.

However, our proposed D3Stereo strategy suffers from the
edge-fattening issue [52], [60] and exhibits limited stereo
matching accuracy near/on extensive disparity discontinuities.
Specifically, large disparities from foreground objects are
diffused to background objects in the intra-scale decisive dis-
parity diffusion process. This phenomenon primarily occurs at
the overlaps between different objects. Therefore, we are moti-
vated to explicitly leverage semantic segmentation results to
constrain the intra-scale disparity propagation process within
each spatially continuous region in our future work, thereby
exploring broader applications of our proposed D3Stereo for
general stereo matching.

F. Performance Evaluation on Backbone DCNNs

Additional experiments are conducted on the UDTIRI-
Stereo and Middlebury datasets with backbone DCNNs
pre-trained on the ImageNet database. The quantitative and
qualitative experimental results are presented in Table V and
Fig. 2 in the supplementary material, respectively. Surpris-
ingly, these backbone DCNNs demonstrate the capability
to perform accurate dense correspondence matching when
utilizing our proposed D3Stereo strategy. Specifically, when
employing the D3Stereo strategy, VGG [45] and ResNet [58]
achieve competitive results in comparison to stereo matching
networks on both UDTIRI-Stereo and Middlebury datasets
and outperform explicit programming-based algorithms on
the UDTIRI-Stereo dataset. These results strongly suggest
that our approach is effective in extending the capabilities
of backbone DCNNs for solving the dense correspondence
matching problem. It can also be observed that MobileNetV3
[59] has fewer feature channels compared to VGG and
ResNet, resulting in lower stereo matching accuracy. We
further validate this viewpoint using MobileNetV3-S [59], a
lighter version of MobileNetV3. As expected, MobileNetV3-
S underperforms MobileNetV3 on both UDTIRI-Stereo and
Middlebury datasets, confirming that the number of feature

channels is a crucial factor that significantly impacts the stereo
matching accuracy.

Moreover, it is noteworthy that D3Stereo achieves improved
efficiency and accuracy when employing three or four feature
layers instead of two feature layers. These results suggest
that deep features obtained at 1/8 and 1/16 of the full image
resolution exhibit similar performance in aggregating global
information and eliminating stereo matching ambiguities.
Consequently, these comparable intermediate results enable
the subsequent decisive disparity diffusion and hierarchical
refinement processes in D3Stereo to ultimately produce dense
disparity maps with similar accuracy. Finally, performing
nearest neighbor search at 1/16 of the full image resolution
significantly reduces the computational complexity compared
to 1/8 of the full image resolution, which offsets the addi-
tional computational demands of decisive disparity diffusion
and hierarchical refinement processes at 1/16 of the full
image resolution, thereby maintaining the overall efficiency of
D3Stereo.

V. CONCLUSION

This article introduces D3Stereo, a novel decisive disparity
diffusion strategy. Our technical contributions include (1) a
recursive bilateral filtering algorithm for efficient and adap-
tive cost aggregation, (2) an intra-scale disparity diffusion
algorithm for sparse disparity map completion, and (3) an
inter-scale disparity inheritance algorithm for fine-grained dis-
parity estimation at higher resolution. Additionally, we also
developed a new dataset to address the need for compre-
hensive performance quantification of stereo matching-based
road surface 3D reconstruction algorithms. Comprehensive
experiments demonstrate the effectiveness of D3Stereo in
adapting pre-trained deep learning models to address the stereo
matching task in both road and general scenes. In the future,
we aim to further improve the accuracy of estimated dis-
parities near/on disparity discontinuities and explore broader
applications of D3Stereo for general stereo matching. This
includes restraining the disparity diffusion process with each
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instance and investigating the integration of D3Stereo for self-
supervised stereo matching.
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