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Abstract— Similarity transformation problems are important
in robotic instrumentation and computer vision-based measure-
ments since in many cases the information of visually observed
scene scale is unknown and must be restored for accurate 3-D
reconstruction. In existing solvers, the scale is often considered as
a scalar, i.e., isotropic, which may be invalid for anisotropic-scale
setups. This article exploits some mathematical coincidences that
will lead to efficient solutions to these problems. Possible further
applications also include hand-eye calibration and structure-
from-motion. We revisit pose estimation problems within the
framework of similarity transformation, the one that considers
scale-stretching, rotation, and translation simultaneously. Two
major problems are taken into account, i.e., the scale-stretching
point-cloud registration (PCR) and perspective-n-points (PnPs).
It has been found out that these two problems are quite
similar. Moreover, we solve the anisotropic-scale registration
problem which is important and is a remaining unsolved one
in previous literatures. To compute the globally optimal solution
of these nonconvex problems, the algebraic solution is obtained
to compute all local minima using computationally efficient
methods. The designed algorithm is deployed for robotic-arm
pose estimation. We also extend the algorithm for solving
the problem of robust magnetometer calibration. Visual pose
experiments verify the superiority of the proposed method
compared with representatives, including P3P, Lambda-Twist
P3P, and EPnP, which can be reproduced by the repository in
https://github.com/zarathustr/APnP.
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NOMENCLATURE

-1l Euclidean norm.

X' Transpose of matrix X.

Xy Skew symmetric matrix of vector x.

q Unit attitude quaternion.

1 Identity matrix of proper size.

0 Zeros matrix of proper size.

R" Real n-dimensional vector space.

Rm>m Real n x m matrix space.

Z Nonnegative integer space.

R% Real n-dimensional vector space with
positive entries.

MN(y, X) Normal distribution with mean of y and
covariance of X.

SO(n) n-dimensional special orthogonal group.

SE(n) n-dimensional special Euclidean group.

I. INTRODUCTION
A. Motivation and Related Work

CCURATE robotic navigation and mapping require

precision pose estimation from visual measurements,
including images and point-cloud information [1], [2]. Among
well-developed methods, point-cloud registration (PCR) and
perspective-n-points (PnPs) are two major categories for esti-
mating relative or absolute poses. The PCR aims to determine
the relative pose between successive 3-D/3-D point-cloud
measurements. The PnP solves the camera pose by the corre-
spondence between 2-D image points and 3-D world points.
Registration-based methods can also be shifted to solving
vision-based calibration problems [3], [4]. In these two meth-
ods, the determination of scale is vital, as it links the estimates
to the geometry of the real world. Therefore, current research
efforts are mainly devoted to obtaining accurate estimates of
scale, rotation, and translation simultaneously.

Extensive efforts have been paid to solving PCR and PnP
problems. Markley and Arun proposed solvers for point-to-
point registration early back in the 1980s, respectively [5],
[6]. The kernel problem of PCR is the determination of point
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correspondences between two point sets to be registered. This
motivates the idea of iterative closest point (ICP) that was
proposed in the 1990°s [7], [8], [9]. The ICP is challenging,
nonconvex, and NP-hard since the sizes of two point sets
are not identical. In many registration problems, the scale
factor is always unknown because of different measurement
principles and unsatisfactory calibration. Horn solves this
scale-stretching registration in [10] and [11] by analytical
results. This was later introduced to the ICP for refined scale-
factor determination [12]. For the PnP problem, the scale
is the depth of the pixel that is significant to the size of
3-D reconstruction. Early methods use direct linear transform
(DLT) [13] by vectorizing the rotation matrix. An approximate
pose solution will be obtained and will be refined by taking the
nearest rotation (orthonormalization) into account [14], [15].
The perspective-3-points (P3Ps) solves the PnP problem by
taking three points of them and verifying the solution via
an extern fourth point [16]. These methods are simple and
computationally efficient but will suffer from large errors when
the input measurements are noisy. The efficient PnP (EPnP)
algorithm solves the method in a least-square manner with
singular value decomposition [17]. There are other variants of
PCR, e.g., the ones using various metrics of point-to-plane [18]
and point-to-line [19] ones, which are not the objective of
this article. Some other methods of PnP solve the problem
by considering the scale as a nonlinear function of attitude
and translation [20], [21]. The new problem is no longer
a similarity transformation problem, which needs extensive
efforts to solve the nonlinear optimization. We also do not
discuss them in this article. In other words, this article targets
at solving the problem analytically to a maximum extent.
To this end, we must face the following challenges behind
the related research.

1) Challenge 1—Scale Matters: We also notice that, follow-
ing the research trend introduced above, there are still
remaining problems in the field. First, the connection
between these problems is not very clear. Further-
more, previous methods only consider the isotropic
scale in estimation. However, in real-world scenarios,
usually, practitioners will encounter anisotropic-scale
PCR (APCR) problems. For instance, if we consider the
registration of point sets measured by two different laser
scanners, the scale may not be the same. Currently, there
is a trend in PCR that merges the anisotropic concerns
into the original one [22]. However, the anisotropic-scale
registration problem is still not solved completely. It is
currently challenging, as in the conclusion of [12], it has
been pointed out that the anisotropic-scale registration is
much harder than the isotropic one.

2) Challenge 2—Convergence is Tough: Although there
have been further studies on the anisotropic registration
by Du al. [23] and Li et al. [24], the results show
that there exist local minima in their algorithm and
satisfactory initial guess must be obtained to guarantee
the global convergence, which may be false in terms of
high outlier rate. This problem continuously exists in
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further related works [25], [26], which highly limits the
practical performance.

3) Challenge 3—More Applications Meet Registration:
In [27], it is inferred that the anisotropic-scale reg-
istration is highly related to sensor calibration issues,
which are important in inertial navigation and robotics.
But the problem is so nonconvex and only approximate
optimization can be solved. Therefore, it will be a little
bit difficult to transfer existing results of isotropic-scale
registration to another. This article aims to solve these
remaining issues that are important to the community.
Theoretical and experimental results support our new
findings. With contributions to be revealed in Section III,
this article treats another challenge, i.e., the data associa-
tion problem, as a well-solved one. The reason is that the
data association problem, sometimes also referred to as
the correspondence matching problem, is a completely
different one, which receives popularity from diverse
communities. In this way, this work will only use some
mature data association techniques in the experimental
validation stage.

B. Contributions

In this article, we revisit these problems by unifying them
as the similarity transformation problem. The contributions of
this article are summarized as follows.

1) First, through theoretical analysis, we show that
scale-stretching PCR (SPCR) and PnP are very similar.
In this way, a simple eigenvalue solution is designed that
unifies them together.

2) We extend the isotropic-scale registration to the
anisotropic-scale one. The new problem is nonconvex.
Therefore, approximate and globally optimal solutions
are derived to solve this challenging problem. The
proposed globally optimal method is convergence-free
while initial-value-free, leading to the fact that it is
efficient and deterministic.

3) The developed theory is transferred to solve not only the
anisotropic-scale registration and PnP but also it helps
solve the problem of magnetometer calibration, where a
point-to-surface registration scheme is proposed.

C. Outline

The remainder of the article is organized as follows: Sec-
tions II-B—II-D first introduce the details of several similarity
transformation problems to be studied. Local and globally
optimal solutions are then presented in Section III. Two
experimental applications, results, and comparisons are shown
in Section IV. Finally, concluding remarks are drawn in
Section V.

II. SIMILARITY TRANSFORMATION PROBLEMS
A. Transformations

Some notations are defined in the Nomenclature at the
beginning of this article. Rotation matrices distribute on the
manifold of n-dimensional special orthogonal group such that
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SO(n) := {R € R”"|R"R = I,det(R) = +1}. The spe-
cial Euclidean group complements SO(n) with an additional
translation vector

SE(n) :=[(§ i)‘ReSO(n),teR”] )

in which 0 denotes a zero matrix with adequate size. When the
scale factor is considered, the similarity transformation group

1S
Sim(n) := { (‘f i)

In this article, Sim(n) is extended to SIM(n), that characterizes
the scale factor in an anisotropic manner

s €R, R eSOn),t ER”].

SIM(n) := [ (SOR ;)’S € diag(R’,), R € SO(n), t € R”]

where R’ stands for the set of n-dimensional real positive
vectors. For 3-D cases, rotation can be parameterized with
unit quaternion, say ¢ = (qo. 1, ¢2.¢q3)' . Rotation matrix
R is quadratically represented in terms of elements of ¢,
so the negative quaternion —q represents the same rotation as
R. Quaternion has the only constraint of unitary norm thus
it is more convenient in optimization problems. Note that,
quaternion is not the simplest formulation for 3-D rotation
parameterization. For any n-dimensional rotation matrix R,
it has related Lie algebra & such that R = exp(&,), in which
& denotes a mapping from R"*~D/2 to R"*" However, there
are infinity many & correspond to R since & is periodic. Thus,
even for a 3-D case, the computation of Jacobian may be
truncated using limited elements of expansion of exp(§, ). The
introduction of Lie algebra simplifies the number of variables
for identifying rotation but brings more nonlinearity. As a
consequence, this article uses the unit quaternion as a kernel
tool for the solution of optimization problems.

B. Problem I: Scale-Stretching 3-D Registration

What we are concerning the most in the remainder of this
article includes the scale-SPCR and PnP problems. Given two
3-D point sets {53} and {R}, the scale SPCR aligns the two sets
together by solving the following absolute orientation problem:

arg min

seR,ReSO(3),tecR3
in which b; € {B} and r; € {R} are points from two
sets. Note that here we assume that the correspondences
between {B} and {RR} have been fixed. The scale- SPCR deals
with the registration problem on Sim(3). The scale-stretching
phenomenon usually comes from devices with different scale
factors. Thus, it is frequently required for 3-D/3-D alignment
between multiple-point cloud measurements from laser scan-
ners.

N
Lspcr = D lIbi —sRri —t]>  (2)
i=1

C. Problem II: Perspective-n-Points

The PnP aims to solve the pose estimation problem between
the undistorted 2-D points in the image plane and correspond-
ing 3-D points in the world frame. Given image coordinates
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u; € R fori = 1,2,...,N and their related 3-D world
points v € R3 fori =1,2,..., N, one would like to achieve
the following perspective transformation:
T

s(u!, 1) =K(Rv; +1) (3)
where K € R**3 is an affine calibration matrix (intrinsic)
accounting for the focal lengths and central points in horizontal
and vertical directions, respectively. Denoting b; = (u,, 1)7
and r; = v;, it is able for us to construct the optimization of

N
Lowp = Y llsbi — Rri —t|>. (4

i=1

arg min
s€R,ReSO(3),teR?

Here, s, R, and ¢ form a transformation on Sim(3). Normally,
s is not independent of R, because from (3), one can conclude
from the last line that s is in nonlinear form of R and
t. Therefore, the essential way for solving highly accurate
PnP relies on the optimization of bundle adjustment (BA).
However, to obtain a good initial guess of BA, s can be
treated independently of R and ¢, such is a common practice
in popular solvers like EPnP [17].

D. Problem IlI: Anisotropic-Scale Registration

In registration with anisotropic scale factors, the following
nonlinear least square problem is considered:

N

. 2
argmin - Lapcr = b — SRri — 1> (5)
ReSO(3),teR3, Sediag(R}) i=1

in which b; and r; are ith correspondence point pair from two
point sets {B} and {R}, respectively. R denotes the rotation
matrix that distributes on the special orthogonal group SO (3)
subject to the nonlinear constraints R™R = I,det(R) = 1.
t acts as a translation vector while S contains three positive
anisotropic scale factors such that S = diag(sy, s2, s3) with
s1, $2, and s3 being positive numbers in the real positive set
R, . Here, S, R, and ¢ constitute a transformation on SIM(3).
Previously, in [12], a scale-stretching ICP problem has been
studied where S degenerates to a scalar, which is exactly the
scale-stretching registration problem stated above. The APCR
problem is much more challenging than the previous one as
mentioned in the concluding remarks of [12], where strong
coupling between § and R has been illustrated. Therefore,
the problem is challenging in the aspect of a globally optimal
optimization solution.

III. SOLUTIONS

A. Scale-Stretching Registration and PnP

The elements of b; and r; are b; = (b,-,l,b,',z,b,-ﬁ)T and
ri = (ri1,ri2.1i3)", respectively. Equations (2) and (4)
specify the target objective of the scale-SPCR and PnP. From
these expressions, it is clear that the only difference is the
location of s. In the following contents, we are going to show
some algebraic results for solving these problems. Moreover,
the two problems are eventually solved in a unified fashion.
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The objective of PnP can be extended as

N
Lpp =Y (sbi — Rri — )" (sb; — Rr; —t).  (6)
i=1
Introducing the unit quaternion ¢ for attitude parameterization
of R, the Lagrangian is

Loap = Loop + Mg g — 1) (7)

where A € R is the Lagrange multiplier. Here, a detailed
relationship between a unit quaternion and a rotation matrix
can be found in [28]. Then, all local optimum occur at the
place where the Jacobian is zero. To compute the Jacobian
analytically, some previous results are invoked. The rotation
matrix R = (Pq, P»q, P3q) in which P, P, and Pj; are
linear matrix of ¢ [29], [30], thus

3

Rr; = (P1q, Pa2q, P3q)r; ZZ”,J‘P/"I ®)
j=1

which gives

3 3

b/ Rr;/dq = Zri,jP,Tbi = Zri,j

j=1 j=1

M;(big  (9)

where M ; matrix is linear in the form of b; (see [30]). In this
way, the blocks of Jacobian are

oL e
PP = 2)\q — ZZZri,ij(sb,- —t)q

(10)
dq i=1 j=1
5 N
9 Lpnp
ot :2Nt—2§sbi—Rr,- (1])
A N
9 Lpnp T
=2 b. (sb; — Rr; —t). 12
o ; [ (s ri—t) (12)
The optimality meets V[:pnp = (. Then, one has
t =sb— Rr (13)
N 3
Ag =D "riiM;[s(bi — b) + RF]q (14)
i=1 j=I1
N N )
5= |:ZblTR(r, —i)]/[ZbT(b, —b)} (15)
i=l i=1
Introducing the identities
P'Pg=gq (16)
(P/P;+P]P)g=0 (17)

the term M ;(Rr)q can be simplified to scaled form of g, say
aq. Therefore, g will be solved via the following problem:

sWqg=(\—a)q (18)
in which

N 3
W= 1/N eri,ij(bi —B)

i=1 j=1

19)
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Note that, for this problem, ¢ is an eigenvector of W associated
with the eigenvalue of (A — «)/s. W is a 4 x 4 symmetric
matrix so there will be four real eigenvalues corresponding
to four possible local minima. Inserting these four possible
solutions of ¢ back into (13) gives four possible solutions of
s. The optimal set of solutions is then obtained by checking
the loss-function value Lp,p. These techniques are similar to
the SPCR problem. The Lagrangian is

Lspcr = Lspcr + Mg g — 1). (20)
We use the fact that R can be decomposed into
"=(019. 029. 039) @D

in which Q,, Q,, and Q; are linear matrices of g. The
derivative of the loss function with respect to quaternion is

3 Lspcr

3
T ngr,,

—b)]+ri,;1]q
(22)

indicating that the solution is also an eigenvalue problem,
like (18).

B. Anisotropic-Scale Registration

For the anisotropic registration, from single-pair equation
b; = SRr; + t, one can conclude the averaged form as b =
SRr + t, that further gives a new optimization

N ~
= > b - srr |
i=1

arg min
ReSO(3),Sediag(R})

LApcr 1 (23)

which is decentralized one without translation ¢ with 5,» =
bi —b = (b1, bi2bi3)', Fi = ri —F = (ri1,ri2.ri3) .
Then, the following norm-based optimization is constructed:

N
argmin Lapcr.s = Z(I;,TS_zl;i — ;,T;i)2~ (24)
Sediag(Ri) i=1
The Jacobian of Lapcr s is
N [ b2 B/s}
8£ C s i1 1
APCR.S _ Z b?,B/s3 (25)
i=1 b%ﬂ/si
in which s = (s1, 52, 53)" and B = (|F;[|> = b7 /s7 —b},/s3 —

bi2_3/s32). To solve s, the equation dLapcr,s/ds = 0 must be
solved. This results in the following polynomial equation after
simplification:

g283a11 + g183a12 + g182a13 + g18283a14 =0
8283a21 + 8183a2 + 8182023 + £18283024 =0
8283031 + 8183a32 + 8182033 + 818283034 = 0

(26)
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: 2 2 2
with g; = s, g2 = 57, g3 = 53, and

a“:—zbil, a12=—zbi2,1bi2,2» als=—zb31b53
aw= YO an = =30 e =3
a3 = — Zb,-z,zb,'2,3’ o = Zbiz,z |7 “2
az = — Zbiz,lbizS’ am == Zbi2bi3

asz = —zb?,y az4 = sz‘z&”;i H2

The closed-form solution to g1, g», and g3 is

27

§1==-G/G1, £=G/Gy, g =-G/Gs (28)

where G = ajjanazs — ajanaz — apazas; + apapaz +
aizanazypy — apands, Gy = anpapazs — apauds; —
a13a200a34 + ai3aazxn + auanas; — auaxpdzn, Gy =
ai1ax3azs — a11024433 — 4130210434 + 413024031 + A14G21a33 —
apsaxpaz; and G3 = apands, — a;audz; — apddz +
aparaaz) + aaariazy — dajsdxpazi. Then, s can be obtained
via

S1 = /81, S2=4/82, 83=4/83.

It should be noticed that (24) only considers the norm con-
straint so the coupling between S and R is lost. Thus, (29) is
an approximate solution of s.

Once an approximate set of scale factors has been found,
inserting it back into (23) gives an approximate rotation
estimate, say Ry. This step can be achieved via either SVD [6]
or eigen-decomposition (EIG) [7]. Using the approximate scale
So, the following equality for ith vector pair can be achieved:

(29)

b; = SoSRRyF; (30)

where SoS = S and RRy, = R are true values of scale
and rotation. § and R are error states of scale and rotation,
respectively. By setting u; = Salbi and v; = RyF;, a new
equivalent optimization for the error states can be established

N
arg min Z”u,- — Si?v,- ||2
ReSO(3),Sediag(RY) -

€Y

which can be solved recursively via the formulae presented
above. By repeating such construction over and over again,
we gradually achieve the minimum. Note that R will even-
tually converge to identity matrix I but the convergence
rate will be quite slow for final iterations. To solve this
problem efficiently, we consider R to be a small-angle rotation,
which can be parameterized as R = I + 6,, in which
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associated skew-symmetric matric. Denoting x = (0T, sHOT,
solving x optimally is identical to find all roots by zeroing
the Lagrangian derivative. Simplified polynomial system is
given by (32), shown at the bottom of the page, where A;;
are coefficient for the ith equation’s jth monomial. Note that
in this system, many coefficients can be omitted by reducing
variables via the following equalities:

hip = —hy, hy=—hig, hpn=hg, hyx=nhp;

hy; = hy7,  hog =hy, h3y1=hy, ha=—hp

hys = hi4,  hzg =hy, hy;=hyg, hig=hy

hap = hos, haz =hi3, haa =his,  has = hos

has = hss, hgg=—2hig, hyg=2hy;, hawo=2hg
hsy = hia, hsy =hi3, hsg=ha, hss=his
hse¢ = h3e, hsy=2hy, hsg=—-2hy7, hso=2hy
her = h13,  hes = hia, hes = hog, hes = hig

hes = hae, her = —2 h11, heg =2 hyg (33)

and hgy = 2 hy7. Required coefficients are summarized in the
following equation:

N N N
2 2
hyy = E VioVi3, hiz= 2 Vi = 2 :Ui,z
i=1 i=1 i=1
N N
his = E Uisviz, hig=— z Ui3viz
i=1 i=1
N N N
2
hiy = — E Vi1Vi2,  hig=— E ViiViz,  hoa = § ‘,Ui,l
i=1 i=1 i=1

N N N
hys = — Z Ui 1v; 3,
i=1

haye = E uj3vi1, his= E Ui ;2
N
h3e = — E Ui2Vj1,
i=1

i=1 i=1
N
hay = — Zui,lvi,l
i=1
and hs; = —Zf\zflui,zv;,z,hm = —Eij\zflumv,',g. It should be
noticed that from last three subequations of (32), one can
directly solve sy, s, and s3 in terms of 6y, 6, and 63, i.e.,
51 = —(ha1 + h4s02 + haet3)/
(h43922 + 496,03 + ha70, + h44932 + h4gts + h42)
53 = —(hsy + hss0; + hsgt)/
(5307 + hso0105 + hs761 + hss03 + hsgfs + hs))
53 = —(he1 + hesO + hesb2)/
(h63912 + he9016 + he70) + hes87 + hegby + he2).

(34)

0 = (61, 6,,03)" characterize small Euler angles and 6, is its (35)
hissy + hiess + hiiss + hiosy + hi3s301 + hias30y + hi75362 + higs303 = 0
hassi + hagss + harst + haasy + hazsi0r + hogs30r + has30; + hagsi6s = 0
h3ssi + hagsa + haist + hasy + hyzsi0s + hags303 + hars30; + hagsi6h = 0 (32)

hat + hapsy + has6r + hag0s + hazs105 + hass103 + hazs102 + hags105 + haos16263 = 0
hsi + hsysy + hssO + hseOs + hs3s207 + hsas:07 + hs7s201 + hsgsa6s + hsgs26163 = 0
het + heass + hesO + hesba + he3sz0f + heas307 + hers301 + hegs30r + heos301602 = 0
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Thus replacing s, 52, and s3 with (35) produces a system
with unknowns of 6y, 8,, and 65 only. The transformed system
is a little bit sophisticated. Related monomials are (36), as
shown at the bottom of the next page. To solve this nonlinear
polynomial system, we may use the Grobner-basis method.
Grobner bases are common properties of a certain polynomial
system. They actually represent a reduced form of original
polynomials so they are easier to be solved via variable
elimination. However, the Grobner-basis method is not appli-
cable for solving this system since the reduced Grobner bases
are too complicated so that evaluating these bases consumes
much more time even than numerical optimizers. Therefore,
to efficiently solve the new system containing only elements of
0, a linear equation is appended: H = 1 + 6, + 6, + 63, which
is a linear combination of first-order monomials {1, 6;, 6,, 63}.
Since the magnitude of @ is small, high-order terms will be
very tiny. In this way, we depart £, into two subgroups ¢; and
&,, where ¢, contains all terms with orders of no more than
3 and ¢, consists of the remainder. Stacking all coefficient of
original polynomials of @ forms the Macaulay matrix M such
that

My =0. (37)
However, after extending H to the original system, the H is
not zero in general. Denoting the new Macaulay matrix as M,
using H as the first extended equation of the new polynomial,
we can write M as

(i ) e
so that
(Hel0)" =M(¢T.e])" (39)
Using the identity of Schur complement, we have
K =M — MoM;' M. (40)
So it follows that:
F¢=H¢, (41)

where ¢, is the eigenvector of JF associated with eigenvalue
H. In this way, all 27 eigenvectors of F can be obtained.
Not all of these 27 eigenvectors are real. Then, by selecting
the real vectors and inserting them back to the loss function
value, the global optimal solution will be obtained. Since the
EIG is highly numerical stable, the proposed method is also
numerical stable.

IV. EXPERIMENTAL RESULTS

In this section, the experimental results from various sen-
sors are reported. The proposed method has been applied
to these cases where comparisons with representatives are
systematically conducted. In all these experiments, the data
association has been performed using a k-d tree, which is easy
to implement and classical.
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TABLE I
SUCCESS RATES OF DIFFERENT ANISOTROPIC REGISTRATION METHODS

Initial Du et al. [23] Lietal [24] Chen et al. [25]  Proposed Global
Random 14.686% 18.922% 16.815% 100%
Author-Given 74.238% 63.401% 78.736% 100%

A. Synthetic Evaluation: Comparisons With Existing
Anisotropic Registration Methods

We replicate the anisotropic registration algorithms in [23],
[24], and [25]. These three methods all belong to the iterative
algorithms which need a good initial guess to converge to
the global minimum. We simulate randomly sampled point
cloud data from the Stanford Bunny model [31]. We sample
50 cases with 5000 points to conduct registration. For each
case, first, 100 initial guess values are generated randomly
for convergence analysis. For reference and transformed point
pairs, the point numbers are consistent, i.e., there will be
no data association challenges in this test. Then, we conduct
another test using initial guess values provided in the original
works (marked as author-given). The registration success rates
are averaged and summarized in Table I. Seen from the results,
since the proposed method is globally optimal, the method is
free of initial-value selection and iterations. However, other
representatives are all iterative. Thus, the performance is
largely dependent on the quality of the initial guess. Although
all these methods provide their respective initial value com-
puting strategy in their works, they do not always lead to
satisfactory registration results. This shows that our method
is much more reliable and deterministic compared to these
existing ones. We also show anisotropic registration results
of several open models. We utilize the frog! model and the
armadillo? model for validation, whose standard models
are shown in Fig. 1. The standard models are downsampled to
high-resolution point clouds. Gaussian noises with covariance
of ¥ = 1072 m? are added to the models, denoting a typical
noisy sensor specification for modern 3-D LiDARs. The scale
factors for two different models are emulated as 2.5 and 0.45,
respectively. In these tests, rotation matrices, and translation
vectors are generated randomly as ground truth. The evaluated
registration results with estimated correspondences are shown
in Figs. 2 and 3.

Some representative candidates are employed for compar-
isons. We show the registration accuracy results for frog
model in Figs. 4 and 5, with statistics shown in Table II. The

error metrics are
tr(R" Rye) — 1
Erot = arccos f

Strans = ”t - ttrue”- (42)

The results indicate that the proposed method achieves the
best rotation and translation accuracy in these tests. As shown
in the correspondences estimated previously, we may see
that the proposed method can generate highly accurate point
correspondences given noisy point cloud pairs. This shows

Uhttp://visionair.ge.imati.cnr.it/ontologies/shapes
Zhttps://graphics.stanford.edu/data/3Dscanrep
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Fig. 1. Utilized standard models for accuracy comparisons of 3-D anisotropic
registration methods.

Z (m)

80

20

X (m)

o oo Y (m)

Fig. 2. Registration results with the proposed anisotropic scale estimation
of the noisy frog models with estimated inlier correspondences (marked in
red).

that the method would be capable of estimating accurate poses
encountering data with outliers.

B. Application I: Accurate PnP Camera Pose

When conducting dynamic grasping tasks with a dynamic
camera, the camera needs to understand the pose of the robotic
gripper in real-time. This requires accurate perception of the
gripper pose by visual correspondences. In our platform shown
in Fig. 6, there is a gripper installed on a 6-degree-of-freedom
(6-DOF) robotic manipulator. There is a 4 x 4 mini chessboard
pattern attached to the robotic gripper using standard printing.

3546014

Z (m)

Fig. 3. Registration results with the proposed anisotropic scale estimation of
the noisy armadillo models with estimated inlier correspondences (marked
in red).

M Duetal M Lietal [/l Chenetal.

2.6

[l Proposed

1.95

0.65

Armadillo

Frog

Fig. 4. Rotation errors of the proposed method with representative methods.
The unit is degree.

A dynamically moving ZED-M stereo camera gazes at the
pattern on the gripper so that the motion of the gripper can
be inspected. To compute the relative camera pose (left cam-
era) with respect to this mini gripper pattern, we implement

Lo = {07050 Ik, k2 s € 24 )

<
|

1,61,07,67,02,03,00,02,05,02,03,05,07,0002,0,0%,0205, 0,07, 0202, 6302, 0202, 0203, 03, 05, 030365, 070365,
076,07, 050203, 010503, 0,030, 0103, 0105, 0705, 0102, 0265, 003, 0,05, 6705, 0305, 056, 0705, 0765, 0965, 0,05,
0105, 0305, 0,03, 0305, 0503, 0503, 0305, 0305, 0,07, 0303, 0,63, 0303, 0107, 0307, 0705, 0705, 0103, 0,62, 6763,

= | 6/65,0763, 6303, 0103, 03035, 0303, 056,05, 020,05, 670,05, 0,0305, 016,07, 010565, 610505, 0,6,05, 616,03, 010363,
010365, 060,07, 070365, 010507, 0,0303, 020,03, 070505, 020,07, 070302, 0,65, 0,63, 010265, 670302, 026507, 626363,
076,05, 070305, 070,03, 0,60563, 05,63, 0165, 0,65, 0705, 0505, 0305, 605, 0765, 0567, 0,0565, 65, 6%, 0,63, 6,65,

0202, 0,03, 0263, 6363, 6,6,63

(36)
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Fig. 5. Translation errors of the proposed method with representative

methods. The unit is meters.

TABLE I

ROTATION AND TRANSLATION ERRORS FOR ANISOTROPIC REGISTRA-
TIONS USING DIFFERENT METHODS (FROG/ARMADILLO)

Methods Rotation Error (°)  Translation Error (m)
Du et al. [23] 1.567/1.808 0.869/0.932
Li et al. [24] 2.434/2.493 1.125/1.098
Chen et al. [25] 1.603/1.831 1.113/1.088
Proposed 1.218/1.226 0.763/0.791

the P3P [16], EPnP [17], Lambda-Twist P3P [32] and our
proposed solution (18) for comparisons. The intrinsic calibra-
tion is obtained using MATLAB calibration toolbox, i.e., the
method of Zhang [33]. The corners of the pattern are extracted
using the histogram method in [34]. Since the pattern is dark,
direct corner extraction is trivial. We track the pattern using the
fast correlation filter proposed in [35]. The trust region of the
tracked area is used as the image for chessboard recognition
and corner extraction (see Fig. 7). When implementing the
P3P method, we use the random sample consensus (RANSAC)
to select the best fourth point for the verified pose. After
evaluation of each algorithm, the pose solution is refined by the
same Quasi-Newton nonlinear optimizer by converting ¢ to its
Lie algebra &. The algorithms are evaluated via the averaged
loss function value

ﬁPnP, mean — £PnP / N (43 )

in (4). We use this metric because this is a mean quality
value, which is proportional to the reprojection error. We name
the proposed method as the algebraic PnP (APnP). The loss
function values of various methods in a single experiment are
shown, respectively, in Figs. 8-10.

The PnP reprojection errors are evaluated according to
estimates given by various algorithms, whose snapshot is
presented in Fig. 11. The root mean squared reprojection errors
of various algorithms in pixels are presented in Table III.
We use different markers to represent the reprojected corners
from various algorithms. Among these reprojected markers,
one may notice that some of them have a large bias with
respect to the correct corners. The results indicate that the
proposed APnP is very accurate and stable. The reason that

3https://github.com/midjji/lambdatwist-p3p
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Fig. 6.

Fig. 7. Tracked chessboard pattern that attached to the robotic gripper. Red:
tracked location of pattern; Yellow: Trust region of tracked location.

the accuracies of P3P and EPnP are low is that when the
pattern moves, the extracted corner pixels have large errors
due to possible motion blur. This can be visualized in the data
provided in our open-sourced dataset (see Acknowledgment).
The computational efficiency of the proposed APnP is high
since it only requires EIG of a 4 x 4 matrix, which can
be computed instantly via a fast method* reported in [14].
Therefore, the designed algorithm can be easily deployed to
even low-configuration platforms for accurate camera pose
estimation.

C. Application II: Magnetometer Calibration

For a vector magnetometer, the raw readings can be modeled

as
m? = TRm'" + by, + €n (44)

“https://github.com/zarathustr/hand_eye_SO4/blob/master/eigd.m
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Fig. 8. Comparison of loss function values between P3P (with RANSAC)
[16] and the proposed APnP.
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Fig. 9.  Comparison of loss function values between EPnP [17] and the
proposed APnP.

where m” and m’ are 3-D vector measurements of magne-
tometer in the body frame and reference frame, respectively;
T e R3 stands for the calibration matrix that takes scale
factor and nonorthogonality into account; R is the rotation
matrix in SO(3); by, and €, ~ (0, X, ) denote the constant
bias and stochastic noise term, respectively. The magnetome-
ter calibration problem is to estimate unknown parameters
T, R, by, and m", with given measurements of m?. The general
calibration problem of the magnetometer can be parameterized
as follows:

N
arg min Z”m;’ —TR;m" — b, H2 (45)

TeR™3 ReSON (3), i1

by eR3,m" eR?

in which R € SON(3) = SO@B3) x SOB) x --- x SO@3)
stands for an element in a power manifold of SO(3) that
includes all R; for i = 1,2,..., N with order up to the
measurement number N, while i stands for the ith sensor
sample time instant. Equation (45) is nonconvex, NP-hard,
and usually trivial. As pointed out in [27], (45) suffers from

3546014

nonunique solutions since S and R; are coupled together.
Special care has been taken to relax (45) to

arg min
UeT@),

N i
ZHm?—Uﬁz? _bmH 46)
bm€R3,y;,”e(U3)N i=1

where (U?)? is the power manifold of unitary 3-D real vector
space U? with order A so that the ith element of m" is m} €
R3, such that lm}|| = 1; T(3) denotes the group of all real
upper triangular matrices. In [27], it has been pointed out that,
(46) can be interpreted into another relaxed optimization

N

2
arg min Z(l — ||Z/l(mf’ —bm)||2) . 47
ue’ﬂ‘(3),bmeR3 i=1
Detailed solutions  to (47) have been  given
in [27], which achieve good accuracy for common
datasets. Initial solution to (47) is given by z =

[veed ' U)T, —2b,, ' U U, b,, U UD,, — 1]7, such that

Yz=0 (48)

where Y is determined by measurements m? for i =

1,2,...,N. Solution of z can be sought by SVD of Y or EIG
of Y Y. However, when there are many outliers or insufficient
measurements, the optimization can hardly be performed.
From (48), it is able for us to see that since z € R, at least
ten noncoplanar measurements are required to obtain the initial
solution. If the outlier rate is high or the measurements are not
sufficient, the linear system (48) will become ill-posed, that
is, U U in z cannot be guaranteed to be positive semidefinite.
In this case, there is no such a Cholesky decomposition for a
nonpositive semidefinite matrix. The origin of (47) is that, for
ideal measurements, one has

|e4(m} = bu) | = 1. (49)
Expanding (49), we have
(m? —by) UTU(mM —b,) = 1. (50)

Let VIDV = U'U be an SOB) EIG (SO3)-EIG) of
UU such that D denotes the matrix with diagonal entries
of eigenvalues and V € SO(3) is the orthonormal basis of
U"U. The SO(3)-EIG is not difficult since for one matrix X if
WTDW = X, where det(W) = —1, V' DV = X also holds
for V.= —W € SO(3). Then, (50) denotes an ellipsoid such
that the center is b, and the semi-major axes are determined
by the square roots of the diagonal elements in the inverse of
D. Equation (50) can be further explicitly given as

(m? — b)) VIDV(m? —b,) =1 (51)
which can be treated as a unit sphere, say X’
X:x'x=1 (52)

that is located in the origin by substitution of x =
:I:@V(mf’ — by,). Therefore, (47) is actually an ellipsoid
fitting problem and need not to be solved in the way of (48).
For the model (51), we have a 9 degree-of-freedom for the
unknowns, which is less than the number of unknowns in (48).
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TABLE III
ROOT MEAN SQUARED REPROJECTION ERRORS OF MULTIPLE METHODS
(IN PIXELS)
Errors P3P - RANSAC EPnP Lambda-Twist P3P Proposed APnP
X-Axis 2.05076 0.22309 0.87190 0.050636
Y -Axis 2.17841 0.26945 0.86411 0.052172

The vector-field sensor intrinsic calibration problem turns into
a surface registration problem with scale of I = /D €
diag(Ri), rotation of R = V € SO(3) and translation of
t = —KCVb,, € R3, such that we find a rigid transformation
that satisfies

x; =KRm’ +t (53)
in which vf? on the ellipsoid surface is the ith corresponding
point of x; on the unit sphere (52), given by raw measurements
vf’ fori =1,2,..., N.Sometimes, when the three axes of the
magnetometer are isotropic, /C becomes a scalar, say s, such
that x; = sR vﬁ’ + ¢t and s actually represents the magnitude of
the geomagnetic field at the local geodetic coordinates. The
new problem is challenging, that is, it is now being formulated
as a point-surface registration. We now solve it in a new
geometrical manner. The point-surface registration is based on
the fact that the geometry of the optimal surface formed by the
points is homotopic to the surface to be registered. Note that
here, homotopy is not rigorously identical to homeomorphism
since the two registered surfaces do not always maintain the
same inner volume. Therefore, we solve the problem in a
discrete way. The following criteria have been proposed:

arg min argmaxZ”rj—KZRpj+t”2. (54)
RES0(3) rieX
teR €y
rcedng(ry) Y

The inner optimization maximizes the count of the points by
selecting the most appropriate subset Y of the measurement
set ), which forms an ellipsoidal surface that corresponds to
the unit sphere X'. The outer optimizer then minimizes the
objective function subject to the rigid loss defined in (53).
In the inner loop, once a temporary 5) has been found, the
ellipsoid equation can be fit via (51) and thus a rough guess
of s, R, and ¢ can be obtained. Then, via s, R, and ¢, the entire
measurement set ) can be remapped to fit the unit sphere X.
In this way, by Cartesian distances of the remapped points to
the unit surface, we can select the best points that are closest
to X. This results in a new map from & back to ), that
recursively refines the two surfaces, which we name it for the
first time, as the ICPs and surfaces (ICPSs). The kernel of this
problem is solved via the proposed solver from (23) to (38).

To verify the proposed algorithm, we first conduct a
hardware-in-the-loop (HITL) simulation. The 3DM-GX5-25
from Microstrain Inc., is employed to collect reference atti-
tude information and calibrated magnetometer readings (see
Fig. 12). The data is gathered at the frequency of 100 Hz.
Then, the reference attitude matrices and magnetic data are
utilized for the simulation of distorted magnetic readings,
including anisotropic scale factor and bias. The distorted mag-
netometer data will be calibrated using the proposed method
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Fig. 10. Comparison of loss function values between Lambda-Twist P3P [32]
and the proposed APnP.
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Fig. 11. Visualized reprojected markers using estimated poses from various
algorithms.

Fig. 12. 3DM-GX5-25 IMU for HITL simulation.

and the 3-D results are shown in Fig. 13. The magnetic norms
before and after the calibration are shown in Fig. 14.

We compare the proposed method with two previous meth-
ods by Wu and Shi [27] and Vasconcelos et al. [36]. After
calibration, the calibration results from various methods are
placed into a Kalman filter for attitude estimation from inertial
and magnetic measurements [37]. During the HITL simulation,
different outlier ratios are simulated. The results are shown in
Table IV. The attitude errors are evaluated by the norm of the
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Fig. 13. Calibration results using the proposed method.
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Fig. 14. Magnetic norm before/after calibration using the proposed method.

TABLE IV

ROOT MEAN SQUARED ATTITUDE ERRORS AFTER MAGNETOMETER CAL-
IBRATION SUBJECT TO DIFFERENT OUTLIER RATIOS (IN DEGREE)

Outlier Wu et al. [27]  Vasconcelos et al. [36] Proposed
5% 0.54906 0.82433 0.37805
10% 2.34245 4.32126 1.17829
20% 6.57822 10.33268 2.21061

Fig. 15.

Designed inertial /magnetic/visual odometry system.

angle axis (Rodrigues vector) of the estimated attitude matrix
and reference one.

The results indicate that the proposed method outper-
forms these representative candidates. The main advantage
is that the proposed method is able to estimate robust
magnetometer calibration parameters subject to high outlier
ratios, which indirectly verifies the effectiveness of the pro-
posed solution to the anisotropic-scale registration problem.
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Fig. 16. Magnetometer calibration results of the designed odometry system.

TABLE V

TIME EFFICIENCY PROFILES OF VARIOUS ANISOTROPIC REGISTRATION
METHODS (IN SECONDS)

Duetal. [23] Lietal [24] Chen et al. [25]  Proposed
0.0923 0.0798 0.1247 0.0712
TABLE VI

TIME EFFICIENCY PROFILES OF VARIOUS PNP METHODS (IN SECONDS)

P3P - RANSAC [16]
0.00285

EPnP [17]
0.00464

Lambda-Twist P3P [32]
0.01832

Proposed APnP
0.00403

Moreover, the designed method is brought to our designed
inertial/magnetic/visual odometry system (see Fig. 15). This
system employs a magnetometer of RM3110, an inertial
measurement unit (IMU) of ICM20948, and a global-shutter
camera of MT9V034. The camera sensor needs much more
power when capturing images than other inertial and magnetic
sensors. This will cause sudden electromagnetic disturbances
in the magnetic readings. Traditional methods like [27]
and [36] cannot deal with the calibration problem very effec-
tively for such a system. We use our proposed method to
estimate the magnetic calibration parameters via (54). One of
the many results will be presented in Fig. 16. Using the cali-
bration results, we are able to compensate for the fast camera
motion distortion by the magnetometer. The attitude estimation
accuracy of the results with our calibration is 0.5203 degree on
average for Euler angles and is 0.9811 degree with the method
in [27], which verifies the superiority of our approach.

D. Time Efficiency

Time efficiency plays a vital role in PnPs, point cloud
registration, and magnetometer calibration, as these processes
often deal with vast amounts of data and require real-time per-
formance. In PnPs, efficient algorithms for feature extraction,
correspondence matching, and pose estimation are essential
to ensure swift and accurate computation of camera pose
from 2-D-3-D correspondences. Similarly, point cloud regis-
tration relies on optimized submodules for keypoint detection,
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TABLE VII

TIME EFFICIENCY PROFILES OF VARIOUS MAGNETOMETER CALIBRATION
METHODS (IN SECONDS)

Wau et al. [27]
0.6436

Vasconcelos et al. [36]

0.7689

Proposed
0.9892

feature description, and transformation estimation to quickly
align and fuse multiple point clouds into a coherent 3-D
model. Magnetometer calibration also demands time-efficient
techniques for data collection, noise filtering, and param-
eter estimation to promptly compensate for sensor errors
and ensure precise orientation tracking. By prioritizing time
efficiency and optimizing submodules, these processes can
deliver high-quality results with minimal latency, enabling
their effective deployment in various applications such as
augmented reality, autonomous navigation, and geospatial
mapping. Through previous experimental validations, we also
test the time efficiency of various algorithms. Specifically,
we summarize the results in Tables V-VII.

In each test, we test various candidates for 1000x to
get the average time efficiency profiles. The time efficiency
evaluation was conducted on a machine with an i7-8500
central processing unit, 16 GB RAM, and 1 TB SSD disk
storage. Seen from the tables, it is found out that the proposed
method has better time efficiency than other methods in 3-D
registration and PnP tasks. However, it is notable that in
magnetometer calibration tasks, the proposed method is slower
than the existing representatives. This is because the proposed
one requires more iterations to achieve good inlier estimation
over large datasets while the kernel computation module, being
anisotropic, indeed requires a higher computational burden
than those analytical guesses in existing works. Therefore,
there is a tradeoff between the time efficiency and accuracy
of the sensor calibration tasks. For other tasks, the proposed
method maintains faster than representatives.

V. CONCLUSION

After revisiting traditional similarity transformation prob-
lems, we prove that two representative branches, i.e.,
scale-SPCR and PnPs, can be solved in a unified manner.
Furthermore, it is shown that an extended anisotropic-scale
problem is challenging, and detailed globally optimal
solutions are derived to solve this problem. The devel-
oped approach has been successfully applied to indus-
trial robotic grasping tasks and magnetometer calibration.
Future efforts will be paid to finding more potentially
better solutions to these problems. Partial experimen-
tal data and codes of this article are open-source at
https://github.com/zarathustr/APnP.
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