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Abstract—Semantic segmentation and stereo matching, respec-
tively analogous to the ventral and dorsal streams in our human
brain, are two key components of autonomous driving perception
systems. Addressing these two tasks with separate networks
is no longer the mainstream direction in developing computer
vision algorithms, particularly with the recent advances in large
vision models and embodied artificial intelligence. The trend
is shifting towards combining them within a joint learning
framework, especially emphasizing feature sharing between the
two tasks. The major contributions of this study lie in compre-
hensively tightening the coupling between semantic segmentation
and stereo matching. Specifically, this study makes three key
contributions: (1) a tightly coupled, gated feature fusion strategy,
(2) a hierarchical deep supervision strategy, and (3) a coupling
tightening loss function. The combined use of these technical
contributions results in TiCoSS, a state-of-the-art joint learning
framework that simultaneously tackles semantic segmentation
and stereo matching. Through extensive experiments on the
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KITTI, vKITTI2, and Cityscapes datasets, along with both
qualitative and quantitative analyses, we validate the effectiveness
of our developed strategies and loss function. Our approach
demonstrates superior performance compared to prior arts, with
a notable increase in mean intersection over union by over 9%.

Note to Practitioners—TiCoSS is a robust and effective joint
learning framework that can simultaneously tackle semantic
segmentation and stereo matching tasks. This work aims to
improve semantic segmentation performance by exploring the
potential complementarity and tightening the coupling between
these two tasks. In the future, we plan to further improve
the efficiency of the framework, so as to enable its real-time
performance on resource-constrained hardware.

Index Terms—Semantic segmentation, stereo matching,
autonomous driving, computer vision, joint learning.

I. INTRODUCTION
A. Background

ISUAL environment perception serves as a fundamental

and front-end module in robotic systems [1]. Semantic
segmentation and stereo matching are two key visual envi-
ronment perception tasks [2]. The former, akin to the ventral
stream in our brain, provides a pixel-level understanding of
the scene [3], while the latter, akin to the dorsal stream in
our brain, mimics human binocular vision to acquire depth
information [4], which is crucial for 3D geometry reconstruc-
tion. These two tasks collaborate to deliver both contextual
and geometric information, resulting in a comprehensive scene
understanding that significantly enhances the capabilities of
robotic systems [5].

Nevertheless, previous studies [6], [7], [8] address these
two tasks with separate networks, which limits their potential
to share informative contextual and geometric information
[9]. For instance, stereo matching networks can occasion-
ally produce ambiguous disparity estimations, particularly in
texture-less and occluded regions [10]. Semantic segmentation
can provide pixel-level scene understanding results, which help
resolve such ambiguities and ultimately lead to more reliable
disparity estimations [11]. In addition, semantic segmentation
networks often struggle to distinguish clear object boundaries,
particularly in complex driving scenarios, due to the lack of
spatial geometric information [12], [13]. A common solution
for improved semantic segmentation performance is to employ
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feature-fusion networks equipped with duplex encoders to
extract heterogeneous features from RGB-X data [14], where
“X” provides spatial geometric information, such as the depth
images generated from LiDAR point clouds [15] and surface
normal maps obtained through depth-to-normal translation [3].
However, the availability and quality of “X” significantly
influence the overall performance of semantic segmentation
and can potentially limit the practical deployment of feature-
fusion networks [5].

Therefore, in recent years, the simultaneous learning,
deployment, and inference of both tasks have become a
mainstream [16], [17], [18], because a unified joint learning
framework can process contextual and geometric information
more comprehensively. It also enables end-to-end training of
the entire system, capable of tackling the challenges posed
by both tasks [19], [20]. Consequently, this joint learning
approach can enhance the overall performance of both seman-
tic segmentation and stereo matching, and outperform models
trained separately for each task [5].

B. Existing Challenges and Motivation

The performance of a feature-fusion semantic segmentation
network is heavily influenced by the employed strategy for
heterogeneous feature fusion [21], [22]. Currently, the bot-
tleneck lies in the simplistic and indiscriminate fusion of
heterogeneous features, which often causes conflicting learn-
ing representations and erroneous segmentation results [23].
Taking the state-of-the-art (SoTA) joint learning method S*M-
Net [5] as an example, its adopted feature fusion strategy
essentially performs an element-wise summation between con-
textual and geometric feature maps at each stage. These feature
maps are then directly fed into subsequent layers without
filtering out irrelevant information, leading to a loose cou-
pling between the semantic segmentation and stereo matching
tasks within the encoder. Furthermore, as the network goes
deeper, such an indiscriminate feature fusion strategy tends to
diminish the proportion of informative geometric features in
the decoder’s input [24], potentially leading to unsatisfactory
semantic segmentation performance.

Additionally, due to the vanishing gradient problem, existing
joint learning frameworks often suffer from slow conver-
gence during training. A common solution is to employ the
deep supervision (DS) strategies that incorporate additional
pathways to achieve gradient propagation [25]. Nonetheless,
existing DS strategies employed in feature-fusion networks
typically overlook the potential interactions between the main
and side auxiliary classifiers, which can limit the overall
semantic segmentation performance within our joint learning
framework.

In the loss function aspect, previous joint learning frame-
works, such as SegStereo [17] and SSNet [26], typically
compute the losses for two tasks independently, and supervise
the entire training process by simply minimizing the weighted
sum of these losses. Such loss function fails to leverage the
potential complementarity between the two tasks at the output
level, which also results in a loose coupling.

Prior arts, such as S?M-Net [5] and DSNet [9], primarily
focus on introducing a joint learning framework that performs
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semantic segmentation and stereo matching simultaneously.
However, exploring the potential complementarity and tight-
ening the coupling between these two tasks have received
relatively limited attention in this research area and warrant
further investigation.

C. Contributions

To address the aforementioned limitations, we introduce
Tightly-Coupled Semantic Segmentation and Stereo Matching
Network (TiCoSS), an end-to-end joint learning approach
that focuses primarily on improving the coupling between
stereo matching and semantic segmentation, which has not
been emphasized in previous relevant studies. Our proposed
TiCoSS introduces three new techniques: (1) a tightly-coupled,
gated feature fusion (TGF) strategy, which utilizes a series
of selective inheritance gates (SIGs) to propagate useful con-
textual and geometric information from the preceding layer
to the current layer, resulting in a tightly-coupled encoder;
(2) a hierarchical deep supervision (HDS) strategy that uses
the fused feature maps with the highest resolution to guide
deep supervision throughout each branch, as these features
contain the most abundant local spatial details; (3) a novel
coupling tightening (CT) loss, consisting of a widely used
stereo matching loss presented in the study [8], the seman-
tic consistency-guided (SCG) loss introduced in the study
[5], a disparity inconsistency-aware (DIA) loss that leverages
disparity estimation results to help distinguish clearer object
boundaries, and a deep supervision consistency constraint
(DSCC) loss which employs the Kullback-Leibler (KL) diver-
gence to improve prediction consistency across outputs from
all deep supervision branches. These contributions collectively
advance S?M-Net, and results in TiCoSS, a new, powerful,
and tightly-coupled joint learning framework that simultane-
ously performs robust and accurate semantic segmentation
and stereo matching tasks. Extensive experiments conducted
on the vKITTI2 [27], KITTI 2015 [28], and Cityscapes [29]
datasets unequivocally demonstrate the effectiveness of the
aforementioned contributions and the superior performance of
TiCoSS over other SoTA approaches.

In summary, the main contributions of this article include:

e The TGF strategy, which propagates useful contextual and
geometric information from the preceding layer to the
current layer, enabling more effective feature fusion for
semantic segmentation;

e The HDS strategy, which uses the fused features with
the richest local spatial details to guide deep supervision
across each branch;

e The DIA loss and the DSCC loss that tighten the coupling
between the two tasks, thereby further improving the
semantic segmentation performance.

D. Article Structure

The remainder of this article is organized as follows:
Sect. II reviews related prior arts. Sect. III introduces our
proposed TiCoSS. Sect. IV compares our network with other
SoTA approaches and presents the ablation studies. Finally, we
conclude this article and provide recommendations for feature
work in Sect. V.
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II. LITERATURE REVIEW

A. Semantic Segmentation

Semantic segmentation has been a long-standing challenge
in the fields of computer vision and robotics over the past
decade [1]. SoTA networks generally fall into two groups:
(1) single-modal networks (with a single encoder) and (2)
feature-fusion networks (with multiple encoders) [3]. Early
efforts primarily focused on encoder-decoder architectures for
pixel-level classification. Representative examples include the
DeepLab series [30], as well as Transformer-based networks
[71, [31], [32]. The encoder extracts hierarchical, contextual
feature maps from input images, while the decoder generates
segmentation maps by upsampling and combining feature
maps from different encoder layers. Nonetheless, these net-
works are limited in effectively combining heterogeneous
features extracted from different sources (or modalities) of
visual information, which makes it challenging to produce
accurate segmentation results in scenarios with poor lighting
and illumination conditions [3]. This has led researchers to
focus on feature-fusion networks that can effectively fuse
heterogeneous features extracted from multiple sources (or
modalities) of visual information. This problem is often
referred to as “RGB-X semantic segmentation”, where “X”
represents the additional modality (or source) of visual
information, in addition to the RGB images. The most repre-
sentative feature-fusion networks include convolutional neural
network (CNN)-based ones, such as RTFNet [33] and the
SNE-RoadSeg series [3], [24], [25], as well as Transformer-
based ones, such as OFF-Net [34], RoadFormer [14], and
DFormer [35]. In this article, we design TiCoSS based on
S*M-Net, with a special emphasis on exploring more effective
solutions for tighter coupling between semantic segmentation
and stereo matching.

B. Stereo Matching

Owing to recent advancements in deep learning tech-
niques, end-to-end deep stereo matching networks [8], [36],
[37], [38] have dramatically outperformed traditional explicit
programming-based stereo matching algorithms. PSMNet [36]
introduces a spatial pyramid to capture multi-scale infor-
mation and employs a series of 3D convolutional layers
to aggregate both local and global contexts for cost com-
putation. To address the high computational cost of 3D
convolutions, researchers have sought ways to balance effi-
ciency and accuracy in stereo matching. LEA-Stereo [37],
for instance, introduces the first neural architecture search
(NAS) framework to stereo matching, enabling automated
architecture optimization. RAFT-Stereo [8], a rectified stereo
matching approach, developed based on RAFT [39], uses
a series of gated recurrent units to iteratively refine cor-
relation features and improve disparity estimation accuracy.
CRE-Stereo [38] further advances this approach by introducing
an adaptive group-wise correlation layer to mitigate the impact
of rectification errors in stereo images, resulting in more
accurate disparity estimation results. In this article, we primar-
ily focus on improving semantic segmentation performance,
and therefore, adopt the stereo matching approach used in
S*M-Net.
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C. Simultaneous Semantic Segmentation and Stereo
Matching

Existing joint learning frameworks that simultaneously
address these two tasks mainly focus on improving disparity
accuracy by leveraging semantic information [9], [11], [16],
[17], [18]. However, discussions on utilizing disparity infor-
mation to enhance semantic segmentation performance at the
feature level for joint learning remain limited, except for the
aforementioned “RGB-X semantic segmentation”. These prior
arts often require extensive annotated training data or involve
complex training strategies for joint learning. For example,
SegStereo [17] necessitates an initial unsupervised training
phase on the large-scale Cityscapes [29] dataset, followed
by a subsequent supervised fine-tuning on the smaller KITTI
[28], [40] datasets. Similarly, the approaches introduced in
[11], [18], [41] require pre-training their spatial branches for
stereo matching on the large-scale SceneFlow [42] dataset
before fine-tuning both semantic and spatial branches on
the KITTT [28] dataset. DSNet [9] adopts a different joint
learning strategy by alternating the training of the semantic
segmentation and stereo matching networks, with parameters
of each network being frozen during the training of the
other. Nevertheless, leveraging both contextual and geometric
information can be challenging, as the shared features between
these two tasks are not learned in an end-to-end manner.
DispSegNet [16] utilizes an embedding learned from the
semantic segmentation branch to refine the initial disparity
estimations. RTS?Net [18] relies on coarse-to-fine estimations
in a multi-stage fashion for accurate disparity estimation.
However, both methods only achieve limited improvement in
semantic segmentation since they fail to leverage informative
spatial details to enhance semantic segmentation performance.
SSNet [26] employs a single encoder to extract shareable
features for both tasks. However, as demonstrated in the study
[43], such shareable features may not be suitable for both
dense prediction and geometric vision tasks. S?M-Net [5],
MENet [12], and SG-RoadSeg [19] use two separate encoding
branches to accomplish these two tasks simultaneously, but
the weak coupling between these branches limits the integra-
tion of contextual and geometric information. In contrast to
the aforementioned approaches, our proposed TiCoSS uses a
tightly-coupled joint learning framework that effectively lever-
ages both contextual and geometric information. Moreover,
TiCoSS is trained in an end-to-end manner and is capable of
learning accurate and robust semantic segmentation and stereo
matching tasks simultaneously, even with limited training
data.

III. METHODOLOGY

A. Framework Overview

The architecture of our proposed TiCoSS is illustrated in
Fig. 1, containing three major technical contributions:

(1) A novel duplex, tightly-coupled encoder designed to
selectively extract and fuse heterogeneous features,
namely contextual features from RGB images and geo-
metric features from disparity maps.
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Fig. 1. The architecture of our proposed TiCoSS for end-to-end joint learning of semantic segmentation and stereo matching.

(2) A novel HDS strategy that leverages fused features with
the richest local spatial details to guide deep supervision
across each branch (auxiliary classifier).

(3) A CT loss that supervises the entire joint learning pro-
cess and further tightens the coupling between semantic
segmentation and stereo matching.

B. Tightly-Coupled Gated Fusion Strategy

S3M-Net [5] proposes an effective joint learning framework
to simultaneously perform semantic segmentation and stereo
matching. Despite achieving impressive results, these two tasks
are loosely coupled. It merely employs the feature fusion
strategy proposed in SNE-RoadSeg [3], where the geometric
features extracted from disparity maps are indiscriminately
fused into the contextual features extracted from RGB images
via simplistic element-wise summation. The fused heteroge-
neous features are then treated as preceding contextual features
and fed into subsequent layers without selective processing,
which can potentially mislead the semantic segmentation task.
This is primarily because the deeper geometric features contain
irrelevant semantic information, and as the network goes
deeper, the proportion of contextual features in the decoder’s
input tends to diminish [24].

Our TGF strategy is, therefore, designed to overcome this
limitation by selectively complementing contextual features
with informative geometric features, resulting in a tightly-
coupled duplex encoder. The core of our TGF strategy is the
SIGs, developed based on Gated Fully Fusion (GFF) [44],
which fuse features from multiple scales using gates that
control the propagation of useful information. This enables
the features at each scale to be enhanced by both deeper,
semantically stronger features and shallower, spatially richer
features, significantly reducing noises during feature fusion.
Nonetheless, GFF is primarily regarded as a late fusion
strategy [45], as it performs feature fusion at the decision

layer and requires multi-scale features to be generated prior
to processing. Additionally, GFF focuses solely on fusing
features extracted from RGB images across multiple scales
and is not well-suited to fuse heterogeneous features which
are extracted and fused progressively. In contrast, our proposed
TGF strategy performs intermediate feature fusion during the
encoding stage, enabling more interactions between hetero-
geneous features. Specifically, it utilizes a series of SIGs
(see Fig. 1) to selectively inherit useful information in XIG_f
from the previous layer into X?’F , the features at the current
layer, where i € [1,n] N Z denotes the layer number, and
the superscripts ‘G’ as well as ‘F’ represent ‘geometric’
and ‘fused’ features,' respectively. Our SIG outputs XiG’F
selectively inherit feature maps at the i-th layer using the
following expression:

XOF = 0, (XOF, XOF) = (14,(1w)" + G;) © XOF

+ (g - 6) o[G0 RXTN], ()

where €; represents the SIG operation at the i-th layer, 1;
denotes a column vector of ones, G; € [0, 1]H*W: represents
a gate map that controls feature propagation, © denotes
the element-wise multiplication broadcasting in the channel
dimension, and R represents the remapping operation, as
detailed in the study [5].

Based on our proposed TGF strategy, the heterogeneous
feature extraction and fusion process in our duplex encoder
can be formulated as follows:

EF (DY), i
FO = )
QF(FC,, EC(FC)), 1<i<n

-1

I
—_

1t is worth noting here that we use XiF instead of Xl.c, where the
superscript ‘C” denotes ‘contextual’ features, primarily because the branch
processing RGB images progressively fuses the geometric features extracted
from disparity maps to obtain fused features.
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and

& (F) o FY, i=1

F/ = JQF (FI,, R(FS_,)) @ F¢

i

l<i<od (3)

O (L, & FL ek, H<isn,

where D” denotes the estimated disparity map, F¢, FY, and FF
respectively represent the extracted contextual feature maps
in the left view, geometric feature maps, and fused feature
maps at the i-th layer, £° and &' denote the geometric
and fused features encoding operations at the i-th layer,
respectively, and @ represents the element-wise summation.
Considering that the shallower features between the two tasks
have similar numbers of channels, we make the contextual
feature maps of the first three layers share weights with
the feature maps extracted from the stereo matching network
in our practical implementation. Our proposed TGF strategy
selectively propagates useful information to subsequent layers,
reducing indiscriminate heterogeneous feature fusion which
can severely mislead semantic segmentation as the network
goes deeper, thus achieving tighter coupling between these
two relevant perception tasks. Further theoretical analyses of
the TGF strategy are provided in the supplement.

C. Hierarchical Deep Supervision

After tightening the coupling between semantic segmenta-
tion and stereo matching during the feature encoding stage,
we turn our focus towards the feature decoding process.
We first revisit the deep supervision strategies employed in
SNE-RoadSeg+ [25] and UNet 3+ [46]. The former applies
deep supervision to the decoded features with the highest
resolution, whereas the latter achieves this goal on the deepest
decoded features at each resolution. Despite the effectiveness
of these two prior approaches in addressing challenges such
as vanishing gradients and slow model convergence, the deep
supervision strategies employed by them are not comprehen-
sive (the former emphasizes enhancing local details, while
the latter focuses on improving consistency across multi-scale
segmentation predictions). Ideally, they should be used in
conjunction to complement each other for improved results.
Therefore, our proposed HDS strategy combines the strengths
of both methods and demonstrates superior performance com-
pared to each individually.

A straightforward way to combine the strengths of these two
methods is to apply deep supervision strategies simultaneously
to both the main and side branches, enabling the network to
leverage features from shallow layers (containing rich local
details) and deep layers (being semantically strong). However,
this method can not fully exploit the potential complementarity
between the main and side auxiliary classifiers, since the
decoded features are exclusively derived from adjacently-
connected ones. Additionally, as discussed in Sect. III-B,
decoded features in deep layers also lack informative spatial
details that are present in shallow layers, limiting the perfor-
mance of DS strategies in our multi-task learning framework.
Thus, to improve the interactions among auxiliary classifiers

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

and provide local spatial details for decoded features in deep
layers, we utilize the decoded, fused feature maps FlF (contain-
ing rich, fine-grained local spatial details that are essential for
semantic segmentation) at the highest resolution to guide the
feature decoding process in the side branches. Specifically, for
the /-th auxiliary classifier within the side branch, we utilize a
feature dynamic alignment (FDA) block, which is composed
of / downsampling units to progressively align channel dimen-
sions and spatial resolutions between a pair of features at
different layers. Each downsampling unit comprises a 3 x 3
convolutional layer with a stride of 2, followed by a batch
normalization (BN) layer and a rectified linear unit (ReLU)
activation layer. Compared to the simple max-pooling opera-
tion which may disrupt the original feature representation, our
FDA achieves a smoother feature alignment. The feature maps
obtained by downsampling F" are then concatenated with the
deepest decoded features at the corresponding layers. This
downsampling output not only guides the decoding process but
also serves as the input for the subsequent downsampling unit,
thereby preserving fine-grained local details to the greatest
extent. Since the outputs of the side branches are obtained
by directly upsampling the deepest features at each layer, this
strategy does not significantly impact training efficiency and
memory usage. Moreover, the auxiliary classifiers of the main
and side branches collaboratively provide additional pathways
for gradients to propagate more efficiently from the output
layers to their corresponding layers, thereby accelerating the
convergence of our model.

D. Coupling Tightening Loss for Multi-1ask Joint Learning

Compared to the tasks focused solely on either semantic
segmentation or stereo matching, the loss function employed
in our joint learning framework aims to supervise both
tasks simultaneously [5]. Our proposed CT loss function is
expressed as follows:

Ler = alpa +BLpscc + Lsce + Lsu. 4

where the DIA loss L£p;4 measures disparity inconsistency,
the DSCC loss Lpscc measures the segmentation consistency
across outputs from all deep supervision branches, the SCG
loss Lsce denotes the semantic consistency-guided (SCG)
loss proposed in the study [5], L5, a prevalently used loss
function to supervise the training of the stereo matching
network, is detailed in the study [5], and the weight factors
a and S are determined through extensive ablation studies, as
detailed in Sect. IV-E.

1) Disparity Inconsistency-Aware Loss: In the previous
study [5], the developed SCG loss focuses mainly on enforcing
semantic consistency to reduce segmentation errors caused by
occlusions, neglecting the fact that occlusions can also lead
to inconsistent disparity estimations, which are unfortunately
under-explored when designing the loss. Thus, we further
incorporate the disparity inconsistency in it to form a more
advanced loss function to train our TiCoSS. Specifically, we
define a weight matrix W € R¥*W drawing from the concept
of left-right consistency check in stereo matching, where

W(p) = D“(p) - D*(p — (D" (p; 0)) ®)
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denotes the weight at the given pixel p, and D’ as well as
D represent the left and right disparity maps, respectively.
WV e RIXW 3 normalized weight matrix, is then yielded,
where

WY(p) = € [0, 1]. (6)

A higher normalized weight corresponds to a greater incon-
sistency between a given pair of left and right disparities,
indicating the need for more attention during the training of
a semantic segmentation model. Our proposed DIA loss is,
therefore, formulated as follows:

n

1 N C
Lom=) =5 2 2 [W® @ logGum)] . M

i=1 j=1 k=1

where n denotes the number of deep supervision branches,
N represents the total number of pixels, C denotes the total
number of classes, yx(p) represents the predicted probability
of pixel p belonging to class k, and y,(p) denotes the ground-
truth label for p in class k.

2) Deep Supervision Consistency Constraint Loss: In prior
studies [25], [46], the relationship among prediction maps
generated by different auxiliary classifiers was not considered,
which may lead to semantic inconsistencies across scales. To
address this issue, we draw inspiration from the study [47]
to design the following DSCC loss, which utilizes the KL
divergence to measure the prediction differences across scales:

SN (p)
L = —— " (p)log =X , 8
DSCC ;; |: N ;)’k(ll) og %) (8)

SEr

where L denotes the total number of auxiliary classifiers.
Further theoretical analyses of the DSCC loss are provided
in the supplement.

IV. EXPERIMENTS

In this article, we conduct extensive experiments to evaluate
the performance of our introduced TiCoSS both quantitatively
and qualitatively. The following subsections detail the used
datasets, experimental setup, evaluation metrics, and the com-
prehensive evaluation of our proposed method.

A. Datasets

Since our network training requires both semantic and
disparity annotations, we utilize the following three public
datasets to conduct the experiments:

e The vKITTI2 [27] dataset contains virtual replicas (pro-
viding 15 semantic classes) of five sequences from the
KITTI dataset. Dense ground-truth disparity maps are
obtained through depth rendering using a virtual engine.
Following the study [5], we employ 700 stereo image
pairs, along with their semantic and disparity annotations,
to evaluate the effectiveness and robustness of our pro-
posed TiCoSS, where 500 pairs are utilized for model
training and the remaining 200 pairs are used for model
validation.

e The KITTI 2015 [28] dataset contains 400 stereo image
pairs captured in real-world driving scenarios. Half of
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these pairs have ground truth annotations, while the
remaining half do not. This dataset provides 19 semantic
classes (consistent with those in the Cityscapes [29]
dataset). Sparse ground-truth disparity maps are obtained
using a Velodyne HDL-64E LiDAR. In our experiments,
we split the data with a 7:3 ratio for training and testing,
respectively.

o The Cityscapes [29] dataset is a widely used urban scene
understanding dataset, containing 2,975 stereo images
for model training and 500 stereo images for model
validation, with well-annotated semantic annotations. It
is noteworthy that the corresponding depth information
is obtained using ViTAStereo [43], since depth ground
truth is unavailable.

B. Experimental Setup

Our experiments are conducted on an NVIDIA RTX 3090
GPU with a batch size of 1. We set the maximum disparity
search range to 192 pixels. All images are cropped to 512 x
256 pixels before being processed by the network. We utilize
the AdamW optimizer for model training, with epsilon and
weight decay set to 1078 and 1073, respectively. The initial
learning rate is set to 2 x 107*. Training lasts for 100,000
iterations on the vKITTI2 dataset, 20,000 iterations on the
KITTT 2015 dataset, and 50,000 iterations on the Cityscapes
dataset. Standard data augmentation techniques are applied to
improve model robustness.

C. Evaluation Metrics

Following the study [5], we quantify the performance
of semantic segmentation using seven metrics: (1) accuracy
(Acc), (2) mean accuracy (mAcc), (3) precision (Pre), (4)
recall (Rec), (5) mean Fl-score (mFSc), (6) mean intersection
over union (mloU), and (7) frequency-weighted intersection
over union (fwloU). We calculate each of these metrics on
a per-image basis before averaging them across the entire
dataset. Moreover, we quantify the performance of stereo
matching using two metrics: (1) average end-point error (EPE)
and (2) percentage of error pixels (PEP) at tolerance levels of
1.0 and 3.0 pixels, respectively.

D. Comparison With State-of-the-Art Methods

1) Semantic Segmentation Performance: The qualitative
experimental results on the KITTI, vKITTI2, and Cityscapes
datasets are presented in Figs. 2, 3, and 4, respectively, while
the quantitative experimental results on these three datasets are
given in Tables I, II, and III, respectively. We also compare
the semantic segmentation performance of TiCoSS and the
baseline S®M-Net using the mmsegmentation framework,>
with the results provided in Table IV.

These results suggest that TiCoSS outperforms all other
SoTA single-modal and feature-fusion networks (including
both CNN-based and Transformer-based methods) across most

>The mmsegmentation framework is available at https://github.com/open-
mmlab/mmsegmentation
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Fig. 2. Qualitative experimental results achieved by the SOTA semantic segmentation networks on the KITTI 2015 [28] dataset.
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Fig. 3. Qualitative experimental results achieved by the SoTA semantic segmentation networks on the vKITTI2 [27] dataset.
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OFF-Net RoadFormer S®M-Net TiCoSS (Ours) Ground Truth

Fig. 4. Qualitative experimental results achieved by the SoTA semantic segmentation networks on the Cityscapes [29] dataset.

evaluation metrics on these three datasets. Specifically, com-
pared with S3M-Net, the SoTA joint learning method, TiCoSS
demonstrates substantial improvements on the KITTI dataset,
achieving increases of 9.68% in mAcc, 10.57% in mloU,
2.71% in fwloU, and 1.20% in mFSc, respectively.
Similarly, on the vKITTI2 dataset, it outperforms other
networks across all evaluation metrics, with improvements
of 3.88% in mAcc, 5.08% in mloU, 0.62% in fwloU, and
0.26% in mFSc, respectively. On the Cityscapes dataset, it
outperforms other networks in most evaluation metrics, with
improvements of 1.99% in mAcc, 4.22% in mloU, 1.60%
in Pre, 2.12% in Rec, and 3.00% in mFSc. Particularly, as
observed in Figs. 2 and 3, TiCoSS achieves more accurate pre-
dictions on distant regions as well as object boundaries and is

capable of providing more fine-grained semantic segmentation
details compared to S’M-Net.

We attribute these improvements to the tighter coupling
between the two tasks within our joint learning framework,
which effectively leverages the informative geometric infor-
mation extracted from our predicted disparity maps. This
enhances the integration of contextual and geometric features
through our proposed TGF strategy, further improving the
ability to handle heterogeneous features.

2) Stereo Matching Performance: The qualitative exper-
imental results on the KITTI and vKITTI2 datasets are
illustrated in Figs. S and 6, respectively, while the quantitative
experimental results on these two datasets are provided in
Table V. Since the primary focus of this study is to improve
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TABLE I

QUANTITATIVE COMPARISONS OF SOTA SEMANTIC SEGMENTATION NETWORKS ON THE KITTI 2015 [28] DATASET. THE BEST RESULTS ARE SHOWN
IN BOLD FONT. THE SYMBOL T INDICATES THAT A HIGHER VALUE CORRESPONDS TO BETTER PERFORMANCE

Networks Publication Type Acc (%) 1 mAcc (%) T mloU (%) T Pre (%) 1 Rec (%) 1 mFSc (%) 1
DeepLabv3+ [30] ECCV’18 82.33 50.15 42.79 83.85 87.18 84.59
BiSeNet V2 [48] ucv21 73.68 41.66 32.71 68.35 81.79 72.37
Segmenter [31] Iccve2l Single-Modal 84.53 50.77 43.63 82.99 87.15 84.41
SegFormer [7] NeurIPS°21 88.28 59.23 51.39 87.15 90.85 88.46
Mask2Former [32] CVPR’22 84.35 54.33 45.87 84.74 89.12 85.92
RTFNet [33] RAL 19 71.61 39.26 30.35 69.52 85.16 74.28
SNE-RoadSeg [3] ECCV’20 79.46 51.91 41.56 81.45 87.05 82.91
OFF-Net [34] ICRA22 . 75.84 40.13 33.13 77.48 72.19 70.62
RoadFormer [14] TIV'24 Feature-Fusion 90.05 62.34 55.13 91.65 91.39 91.11
RoadFormer+ [23] TIV'24 91.35 66.29 57.69 91.24 92.07 91.47
DFormer [35] ICLR’24 90.59 69.01 58.18 91.20 93.58 91.96
DispSegNet [16] RA-L’18 88.03 62.54 53.44 88.22 92.53 89.68
DSNet [9] ICRA’19 89.48 64.44 52.83 89.41 93.25 90.73
SG-RoadSeg [19] ICRA24 Joint Learning 86.51 61.10 52.02 88.46 80.10 84.96
S®M-Net [5] TIV'24 90.66 65.90 57.80 90.85 93.55 91.80
TiCoSS (Ours) TASE’25 91.90 71.97 63.63 92.43 94.10 92.90
TABLE II

QUANTITATIVE COMPARISONS OF SOTA SEMANTIC SEGMENTATION NETWORKS ON THE VKITTI2 [27] DATASET. THE BEST RESULTS ARE SHOWN IN
BoOLD FONT. THE SYMBOL T INDICATES THAT A HIGHER VALUE CORRESPONDS TO BETTER PERFORMANCE

Networks Publication Type Acc (%) T mAcc (%) T  mloU (%) 1 Pre (%) 1 Rec (%) 1 mFSc (%) 1
DeepLabv3+ [30] ECCV’18 92.19 63.15 56.90 89.00 92.71 90.16
BiSeNet V2 [48] cv’21 81.77 51.07 44.45 83.23 82.19 80.67
Segmenter [31] ICCV 21 Single-Modal 90.39 60.33 52.99 88.05 87.89 87.70
SegFormer [7] NeurIPS’21 94.75 70.56 64.98 93.57 93.62 93.46
Mask2Former [32] CVPR’22 89.29 64.58 57.14 90.75 87.23 87.19
RTFNet [33] RAL'19 85.22 49.47 42.59 83.74 89.17 84.41
SNE-RoadSeg [3] ECCV’20 83.64 60.85 52.56 83.44 81.66 71.77
OFF-Net [34] ICRA’22 . 90.84 61.51 55.27 89.24 86.71 86.15
RoadFormer [14] TIV'24 Feature-Fusion 97.54 86.58 80.83 96.99 96.86 96.91
RoadFormer+ [23] TIV'24 98.45 89.79 84.03 96.36 96.94 97.77
DFormer [35] ICLR 24 97.79 89.06 85.54 96.41 94.67 95.58
DispSegNet [16] RA-L'18 97.15 82.63 80.24 97.39 97.66 97.46
DSNet [9] ICRA’19 95.71 78.71 77.47 97.20 96.66 96.81
SG-RoadSeg [19] ICRA 24 Joint Learning 95.17 85.57 80.91 86.10 88.50 86.31
S3M-Net [5] TIV'24 98.32 88.24 84.18 98.37 98.28 98.31
TiCoSS (Ours) TASE’25 98.69 91.66 88.46 98.55 98.67 98.57

RGB Image PSMNet LEA-Stereo RAFT-Stereo CRE-Stereo
ACVNet PCW-Net IGEV-Stereo S3M-Net TiCoSS (Ours)

Fig. 5. Qualitative experimental results achieved by the SoTA stereo matching networks on the KITTI 2015 [28] dataset.

semantic segmentation performance, the stereo matching per- improvements of 3.64% in EPE and 2.47% in PEP 3.0 on
formance of TiCoSS is slightly better than that of SM-Net. the KITTI dataset. Additionally, on the VKITTI2 dataset,
Specifically, compared to S*M-Net, TiCoSS demonstrates it achieves improvements of 5.26% in EPE and 1.26% in
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TABLE III

QUANTITATIVE COMPARISONS OF SOTA SEMANTIC SEGMENTATION NETWORKS ON THE CITYSCAPES [29] DATASET. THE BEST RESULTS ARE SHOWN
IN BoLD FONT. THE SYMBOL T INDICATES THAT A HIGHER VALUE CORRESPONDS TO BETTER PERFORMANCE. VALUES MARKED WITH “-”
DENOTE THAT THE CORRESPONDING METRICS WERE NOT REPORTED IN THE ORIGINAL PAPER

Networks ‘ Publication ‘ Type Acc (%) T mAcc (%) T  mloU (%) 1 Pre (%) 1 Rec (%) 1 mFSc (%) T
DeepLabv3+ [30] ECCV’18 84.11 62.75 50.15 71.12 57.34 59.96
BiSeNet V2 [48] cv’21 85.61 61.16 49.65 71.00 57.61 62.50
Segmenter [31] ICCV’21 Single-Modal 90.19 79.87 62.76 76.90 80.99 77.19
SegFormer [7] NeurIPS’21 88.12 73.79 62.48 75.50 78.81 71.02
Mask2Former [32] CVPR’22 87.97 78.80 64.29 75.01 78.26 74.71
RTFNet [33] RAL'19 88.41 67.16 50.19 69.41 70.07 67.40
SNE-RoadSeg [3] ECCV’20 86.60 75.47 63.01 70.56 74.19 75.58
OFF-Net [34] ICRA’22 . 76.88 60.03 43.11 70.68 71.01 69.65
RoadFormer [14] TIV’24 Feature-Fusion 87.11 75.49 62.20 74.49 76.84 75.50
RoadFormer+ [23] TIV’24 90.40 78.86 64.18 77.19 80.06 76.60
DFormer [35] ICLR’24 91.37 80.16 65.59 76.60 79.65 77.41
DispSegNet [16] RA-L’18 84.07 62.18 56.10 70.00 60.92 61.16
DSNet [9] ICRA’19 84.01 62.25 52.79 69.56 63.74 61.26
MENet [12] TITS 21 93.39 69.53 61.50 - - -
SG-RoadSeg [19] ICRA’24 foint Learning 85.80 66.95 54.18 74.10 67.92 70.10
S3M-Net [5] TIV’24 88.47 77.30 62.59 75.20 77.48 76.30
TiCoSS (Ours) TASE’25 90.70 81.76 68.36 78.43 81.76 79.74
= R T
RGB Image PSMNet LEA-Stereo RAFT-Stereo CRE-Stereo
R '
ACVNet PCW-Net IGEV-Stereo S3M-Net TiCoSS (Ours)

Fig. 6. Qualitative experimental results achieved by the SOTA stereo matching networks on the VKITTI2 [27] dataset.

TABLE IV

QUANTITATIVE COMPARISONS BETWEEN TICOSS AND THE BASELINE
S3M-NET, EVALUATED USING THE MMSEGMENTATION FRAMEWORK.
THE BEST RESULTS ARE SHOWN IN BOLD FONT. THE SYMBOL T
INDICATES THAT A HIGHER VALUE CORRESPONDS TO BETTER

PERFORMANCE
mloU (%) 1
Methods
VvKITTI2 KITTI 2015 Cityscapes
S3M-Net [5] 84.00 41.54 55.40
TiCoSS (Ours) 87.94 47.66 62.16

PEP 1.0. These improvements can be attributed to the tighter
coupling between the two tasks, resulting in more com-
prehensive geometric features with informative contextual
information compared to S3M-Net. Additionally, by mini-
mizing the CT loss, our model focuses more on areas with
inconsistent disparities and achieves improved performance in
occluded regions, as depicted in Fig. 6.

E. Ablation Studies

1) Heterogeneous Feature Fusion Strategy: Extensive
experiments are conducted on the KITTI 2015 [28] dataset

to validate the effectiveness of our proposed TGF strategy,
compared with two other SoTA feature fusion strategies:
adaptive spatial feature fusion (ASFF) [52] and GFF [44]. As
presented in Table VI, TGF outperforms both ASFF and GFF,
with an increase in mloU by up to 7.93%, and an increase
in fwloU by 8.26%. These compelling results demonstrate
the capability of TGF for effective feature extraction and for
selective feature propagation. Additionally, we demonstrate the
rationality of employing feature fusion strategies within each
encoding branch. It is evident that all models perform best
when feature fusion is adopted in both branches, demonstrating
the necessity to selectively extract and fuse heterogeneous
features within both encoding branches.

2) Deep Supervision Strategy: We first compare the perfor-
mance of our proposed HDS strategy with single-resolution
deep supervision (SDS) [25], full-scale deep supervision
(FDS) [46], and the combination of them (referred to SDS +
FDS). As presented in Table VII, our proposed HDS achieves
the SoTA performance across both evaluation metrics, with
improvements of up to 5.59% in mloU and 2.02% in fwloU.
These compelling results can be attributed to the improved
interactions among auxiliary classifiers, leveraging fused fea-
tures with the richest local spatial details in the main branch
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TABLE V

COMPARISONS OF SOTA STEREO MATCHING NETWORK ON THE KITTI 2015 [28] AND VKITTI2 [27] DATASETS. THE SYMBOL | INDICATES THAT A
LOWER VALUE CORRESPONDS TO BETTER PERFORMANCE. THE BEST RESULTS ARE SHOWN IN BOLD FONT

VvKITTI2 [27] KITTI 2015 [28]
Networks Publications PEP (%) | PEP (%) |
EPE (pixels) | EPE (pixels) J
> 1 pixel > 3 pixels > 1 pixel > 3 pixels
PSMNet [36] CVPR’18 0.68 10.31 3.77 0.74 16.12 2.61
LEA-Stereo [37] NeurIPS’20 0.83 13.33 4.84 0.83 18.67 322
RAFT-Stereo [8] 3DV’21 0.40 5.88 2.67 0.60 10.78 1.96
CRE-Stereo [38] CVPR’22 0.63 10.35 3.90 0.92 19.68 3.35
ACVNet [49] CVPR’22 0.61 9.41 345 0.68 13.93 2.10
PCW-Net [50] ECCV’22 0.63 9.45 3.49 0.70 14.81 2.43
IGEV-Stereo [51] CVPR’23 0.47 7.15 3.09 0.62 12.15 1.99
DispSegNet [16] RA-L'18 0.50 6.37 291 0.81 14.47 2.69
DSNet [9] ICRA’19 0.64 8.42 3.82 0.73 15.10 2.92
S*M-Net [5] TIV'24 0.38 5.56 2.55 0.55 10.02 1.62
TiCoSS (Ours) TASE’25 0.34 543 2.58 0.54 10.39 1.60
TABLE VI TABLE VIII

QUANTITATIVE COMPARISONS BETWEEN OUR PROPOSED TGF STRATEGY
AND TwWO SOTA FEATURE FUSION STRATEGIES, ASFF AND GFF,
ONTHE KITTI 2015 [28] DATASET. “Baseline”: S3M-NET w/0
SCG Loss [5]. THE SYMBOL T INDICATES THAT A HIGHER
VALUE CORRESPONDS TO BETTER PERFORMANCE. THE
BEST RESULTS ARE SHOWN IN BOLD FONT

Disparity RGB
Feature Fusion Strategies mloU (%) 1T fwloU (%) 1
Branch Branch
Baseline 54.33 83.44
v 54.72 83.10
Baseline + ASFF [52] v 54.16 78.25
v v 55.92 83.88
v 57.13 84.33
Baseline + GFF [44] v 57.66 83.69
v v 58.03 84.39
v 55.80 84.30
Baseline + TGF (Ours) v 58.44 82.87
v v 59.06 84.72
TABLE VII

ABLATION STUDY ON OUR HDS STRATEGY ON THE KITTI 2015 [28]
DATASET. “Baseline”: SM-NET [5] ENHANCED BY OUR TGF STRAT-
EGY. THE SYMBOL T INDICATES THAT A HIGHER VALUE CORRE-
SPONDS TO BETTER PERFORMANCE. THE BEST RESULTS ARE
SHOWN IN BOLD FONT

Methods mloU (%) 1 fwloU (%) T
Baseline 59.06 84.72
Baseline + SDS [25] 60.01 84.79
Baseline + FDS [46] 60.62 85.20
Baseline + SDS + FDS 60.86 85.59
Baseline + HDS (Ours) 62.36 86.33

to guide deep supervision across side branches. Additionally,
it is noteworthy that the straightforward combination of SDS
and FDS results in a marginal improvement compared to using
FDS alone. Additionally, SDS is adopted only at the highest
resolution, where features have a low number of channels,

ABLATION STUDY ON THE SELECTION OF THE GUIDANCE FEATURES
EMPLOYED IN OUR HDS STRATEGY ON THE KITTI 2015 [28]
DATASET. “FeatureLayer”: THE LAYER INDEX OF THE GUID-
ANCE FEATURE, WITH OPTIONS OF 1, 2, AND 3. “GF”:
GEOMETRIC FEATURES, “CF”: CONTEXTUAL FEATURES,
“FF”: FUSED FEATURES, OBTAINED BY PERFORMING
AN ELEMENT-WISE SUMMATION OF THE GEOMET-

RIC AND CONTEXTUAL FEATURES. THE SYMBOL
T INDICATES THAT A HIGHER VALUE CORRE-

SPONDS TO BETTER PERFORMANCE. THE
BEST RESULTS ARE SHOWN IN BOLD

FoNT
Feature Layer Method
mloU (%) 1 fwloU (%) T

1 2 3 GF CF FF
v v 61.74 86.88
v v 62.09 86.48
v v 62.36 86.33
v v 61.18 85.52
v v 61.12 86.85
v v 62.11 86.31
v v 56.67 83.68
v v 59.05 84.11
v v 60.26 85.60

resulting in almost no additional memory usage. Therefore,
we incorporate SDS into our HDS. Furthermore, we conduct
an additional ablation study to evaluate the performance of
HDS when utilizing guidance features in different layers and
of various types. As shown in Table VIII, the fused features at
the shallowest layer result in the best performance compared
to another two. We attribute this superior performance to the
rich, fine-grained local spatial details that Ff contains, which
are essential for semantic segmentation.

3) Loss Function: We systematically incorporate each ele-
ment into the CT loss to assess its influence on the overall
performance. Experimental results presented in Table IX val-
idate the effectiveness of each component of our proposed
CT loss. It is evident that the DIA and DSCC losses make
significant contributions to semantic segmentation. Notably,
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Fig. 7. The selection of hyperparameters @ and § within the CT loss on the
KITTI 2015 [28] dataset.

TABLE IX

ABLATION STUDY TO VALIDATE THE EFFECTIVENESS OF THE THREE
SEMANTIC SEGMENTATION LOSSES WITHIN OUR CT LOSS ON THE
KITTI 2015 [28] DATASET. THE SYMBOL T INDICATES THAT A
HIGHER VALUE CORRESPONDS TO BETTER PERFORMANCE.
THE BEST RESULTS ARE SHOWN IN BOLD FONT

DIA DCSS SCG mloU (%) 1 fwloU (%) 1
62.36 86.33
v 63.04 86.48
v 62.88 85.98
v 62.75 86.66
v v 63.54 86.50
v v 63.15 86.7
v v 62.99 86.59
v v v 63.63 86.68

when the entire joint learning framework is trained by min-
imizing the CT loss, TiCoSS achieves the best performance
on the KITTI dataset, attaining a maximum mloU of 63.63%.
Additionally, to maximize the effectiveness of our proposed
loss function, we first conduct an ablation study on the
selection of loss weight @ in (7). Fig. 7 shows the mAcc and
mloU values with respect to different @ within the range of 0.0
to 2.0. It can be obviously observed that when a = 1.5, TiCoSS
achieves the best overall performance for both evaluation
metrics. Following the selection of @, we conduct another
ablation study to determine B in (8). Fig. 7 demonstrates
that § = 1.0 is the best choice. Further weight tuning is
possible, but it should be approached cautiously, especially
when dealing with limited data to avoid over-fitting.

4) All Contributions: We explore the rationality of each
contribution adopted in our TiCoSS. As presented in Table X,
we sequentially incorporate each novel component to assess
its impact on the overall performance. Please note that our CT
loss is based on HDS strategy. Therefore, no ablation study
needs to be conducted solely with the CT loss. The results
demonstrate that each component employed in our model
contributes to an improvement in the overall performance,
and the network achieves its peak performance when all
novel contributions (TGF, HDS, and CT loss) are leveraged,
demonstrating the effectiveness of our design.

F. Efficiency Analysis

Additionally, TiCoSS contains 385.05 million trainable
parameters and requires 308.86 GFLOPs to process an image
with a resolution of 512 x 256 pixels. When deployed on
an NVIDIA GeForce RTX 3090 GPU paired with an Intel

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

TABLE X

ABLATION STUDY ON THE THREE CONTRIBUTIONS ON THE KITTI 2015
[28] DATASET. THE SYMBOL T INDICATES THAT A HIGHER VALUE
CORRESPONDS TO BETTER PERFORMANCE. THE BEST RESULTS
ARE SHOWN IN BOLD FONT

TGF HDS CTloss | mloU(%)1  mFSc (%) 1
v 59.06 91.26
v 58.49 92.10
v v 62.36 92.74
v v 61.18 92.46
v v v 63.63 92.90

Core 17-13700KF processor, it achieves an inference speed
of 0.30 seconds per image, with a memory usage of around
5.82 GB. We believe that the further reduction of TiCoSS’s
computational complexity is essential for deployment on
resource-constrained hardware.

G. Additional Experiments

We conduct several additional experiments, as detailed in
the supplement to comprehensively validate the effectiveness
of TiCoSS. Specifically, we evaluate TiCoSS’s robustness by
conducting extensive experiments under various weather con-
ditions and challenging scenarios. Moreover, we submit our
results to the KITTI Semantics benchmark to compare TiCoSS
with methods whose codes are not publicly available. These
additional qualitative and quantitative experimental results
further demonstrate the superior performance of TiCoSS.

V. CONCLUSION AND FUTURE WORK

This article introduced TiCoSS, a novel, high-performing,
and state-of-the-art joint learning framework designed to
tighten the coupling between the semantic segmentation and
stereo matching tasks. We made three key contributions in this
work: (1) an effective feature fusion strategy and a tightly-
coupled duplex encoder, leveraging the informative spatial
information to enhance the semantic segmentation task, (2) a
novel hierarchical deep supervision strategy that improves the
interactions among all auxiliary classifiers, and (3) a joint
learning loss that focuses on further tightening the coupling of
these two tasks at the output level. The effectiveness of each
contribution was validated through extensive experiments.

Despite its superior performance over existing approaches,
TiCoSS still requires both semantic and disparity annotations,
and collecting data with such ground truth remains a labor-
intensive process. Thus, exploring semi-supervised or few-shot
semantic segmentation methods, and un/self-supervised stereo
matching methods is a promising avenue for our future
research.
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