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Abstract— The creation of a metric-semantic map, which
encodes human-prior knowledge, represents a high-level abstrac-
tion of environments. However, constructing such a map poses
challenges related to the fusion of multi-modal sensor data, the
attainment of real-time mapping performance, and the preserva-
tion of structural and semantic information consistency. In this
paper, we introduce an online metric-semantic mapping system
that utilizes LiDAR-Visual-Inertial sensing to generate a global
metric-semantic mesh map of large-scale outdoor environments.
Leveraging GPU acceleration, our mapping process achieves
exceptional speed, with frame processing taking less than 7ms,
regardless of scenario scale. Furthermore, we seamlessly integrate
the resultant map into a real-world navigation system, enabling
metric-semantic-based terrain assessment and autonomous point-
to-point navigation within a campus environment. Through
extensive experiments conducted on both publicly available and
self-collected datasets comprising 24 sequences, we demonstrate
the effectiveness of our mapping and navigation methodologies.

Note to Practitioners—This paper tackles the challenge of
autonomous navigation for mobile robots in complex, unstruc-
tured environments with rich semantic elements. Traditional
navigation relies on geometric analysis and manual annotations,
struggling to differentiate similar structures like roads and side-
walks. We propose an online mapping system that creates a global
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metric-semantic mesh map for large-scale outdoor environments,
utilizing GPU acceleration for speed and overcoming the limita-
tions of existing real-time semantic mapping methods, which are
generally confined to indoor settings. Our map integrates into
a real-world navigation system, proven effective in localization
and terrain assessment through experiments with both public
and proprietary datasets. Future work will focus on integrating
kernel-based methods to improve the map’s semantic accuracy.

Index Terms— Autonomous driving, mapping, navigation.

I. INTRODUCTION

A. Motivation

AS THE basis of localization and navigation, mapping is of
growing importance in robotics. Mapping is the process

of establishing an internal representation of environments
which can be operated by algorithms [1]. As the widely used
representation, metric maps (also referred to as “geometric
maps”) store geometry of a scene and are usually defined
by positions of landmarks, distance to obstacles, or binary
values to indicate free and occupied space, which are critical
for robots to optimize a smooth and collision-free trajectory.
However, metric maps have difficulty in maintaining the
long-term consistency since geometric features are sensitive
to illumination and structural changes. Also, metric maps
have limitation in encoding human-readable information. It is
inconvenient for robots to execuate abstract human instructions
(e.g., “navigate to the building” and “follow driving rules”).

In contrast, metric-semantic mapping [2] is the capability
to group semantic concepts into metric maps. The inclusion
of human-labeled information facilitates many tasks such
as scene abstraction [2] and exploration [3]. In this paper,
we focus on the autonomous navigation task of ground
robots in complicated environments with abundant semantic
elements. A typical scenario is shown in Fig. 1, where many
different objects such as trees and buildings appear. It is
also composed of the sidewalk that is specifically designed
for pedestrains. By incorporating human-prior knowledge, the
semantic map enables the vehicle to navigate along the road,
finding a path that is free of collisions and avoids intersect-
ing with sidewalks and grasslands. However, geometry-based
traversability extraction methods often face challenges in
distinguishing between roads, sidewalks, and grass due to
their similar structures. Hence, this paper aims to investigate
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Fig. 1. To successfully navigate in the complicated environment or conduct
high-level or interactive tasks for a robot (such as the vehicle shown in
the figure), semantic information that categorizes surrounding objects at a
human-readable format is required.

the online metric-semantic mapping method and its potential
application in navigation systems.

B. Challenges

We consider that a desirable metric-semantic mapping
approach should meet the following requirements:

1) Accuracy: The approach should aim to construct a
map that closely represents real-world environments
using onboard sensor data. However, factors such as
measurement noise, different view angles, and limited
observations affect the quality of the map construction.

2) Efficiency: Mapping is typically a time-consuming task,
as numerous map elements need to be queried and
updated based on new input. It is crucial to ensure
real-time and consistent performance, especially for
high-resolution or large-scale mapping applications.

3) Versatility: The resulting metric-semantic map should
be capable of supporting a wide range of applications,
including but not limited to localization, path planning,
and environment understanding [2].

C. Contributions

As the primary dcontribution, we propose an online
mapping system to address these challenges. This sys-
tem leverages LiDAR-visual-inertial sensing to estimate the
real-time state of the robot and construct a lighweight
and global metric-semantic mesh map of the environment.
To achieve this, we build upon the work of NvBlox [4] and
thus utilize a signed distance field (SDF)-based representa-
tion. This representation offers the advantage of constructing
surfaces with sub-voxel resolution, enhancing the accuracy of
the map. While the focus of this paper is on mapping outdoor
environments, the proposed solution is easily adaptable for
various applications. The modular system consists of four
primary components:

1) State Estimator (Section IV-A) is a LiDAR-visual-
inertial odometry (LVIO) module implementing the
Extended Kalman Filter (EKF) to estimate real-time
sensors’ poses with a local and sparse color point cloud.

2) Semantic Segmentation (Section IV-B) is a pre-trained
convolutional neural network (CNN) that assigns a class
label to every single pixel of each input image. A novel
dataset that categorizes objects into diverse classes for
the network training is also developed.

3) Metric-Semantic Mapping (Section IV-C) takes sensors’
measurements and poses as input, and constructs a
3D global mesh of environments using the implicit
SDF-based volumetric representation with semantic
annotations from the 2D pixel-wise segmentation. The
whole pipeline is implemented in parallel with the GPU
and thus achieves the real-time performance. To approx-
imate the surface geometry more accurate and complete
(e.g., less holes), the original distance calculation is
improved.

4) Traversability Analysis (Section IV-D) identifies drivable
areas by analyzing the geometric and semantic attributes
of the resulting mesh map, thus narrowing the search
space for subsequent motion planning.

The second contribution is an extensive experimental
evaluation focusing on mapping. We evaluated the mapping
system using both public datasets and our own collected
data, including the SemanticKITTI [5], SemanticUSL [6], and
FusionPortable dataset [7]. Additionally, we collected two test
sequences on campus, covering outdoor scenes with build-
ings, roads, and grasslands. Our robot system utilizes maps
constructed from these self-collected sequences, enabling the
robot to complete point-goal navigation missions.

The third contribution encompasses real-world
experiments on autonomous navigation employing the
metric-semantic map created by our mapping method. This
effort effectively bridges the previously unconnected realms of
semantic mapping and navigation. The semantic data encoded
in the map translates human instructions, thereby enabling
robots to navigate safely within unstructured environments.
We will publicly release the code of semantic mapping and
self-collected datasets in the project website.1

II. RELATED WORK

This section reviews the current literature on mapping
and navigation techniques, focusing specifically on algorithms
developed for mobile robots in unstructured environments.

A. Geometric Mapping

Existing map representations are categorized into explicit
and implicit approaches. Explicit representations such as point
clouds and surfels are widely studied in localization [19].
But points or surfels lack connectivity, where latent structural
information is missing. Another type of explicit representation
is the triangular mesh, where structural information through
vertices and triangle facets are preserved. Meshes can depict
manifold structures and topology of objects, which have been
applied in scene reconstruction [20] and planning [21]. How-
ever, explicit representations have difficulty in maintaining the
up-to-date map over a long period [22], where environments
always are changing (e.g., dynamic objects).

Implicit representations of environments are categorized
into volumetric, elevation, and radiance field-based mappings.
The 2.5D elevation map, efficient for legged robots’ foot-
step planning, stores height as a Gaussian variable per grid

1https://gogojjh.github.io/projects/2024_semantic_mapping
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TABLE I
DIFFERENCES IN EXISTING WORKS ON SEMANTIC MAPPING

but falls short in multi-layered scenarios and constraining
6-DoF motions [23]. Radiance field approaches [18] offering
the ability to infer unseen areas but at the cost of high
computational demands for large-scale mapping. Volumetric
methods store 3D scene geometry using discretized volumes,
facilitating parallel GPU implementation for real-time appli-
cations. Approaches include occupancy grid mapping, which
assigns occupancy probabilities to voxels [24], and SDF-
based mapping [14], capturing precise surface geometries with
distance functions.

Our approach leverages the Truncated Signed Distance
Function (TSDF) for environment representation, utilizing
GPU parallelization to enhance mapping efficiency. We intro-
duce a non-projective distance calculation to accurately
estimate voxel distances, sidestepping the memory-heavy
ESDF creation needed for Voxblox’s collision detection.
Instead, we utilize mesh-based traversability analysis and
occupancy data for optimizing ground robot navigation.

B. Semantic Mapping

Semantic maps often build upon geometric representations
by annotating map elements with labels. Semantic map-
ping is often coupled with segmentation algorithms, such
as DeepLab [25], by classifying voxels into object cate-
gories. The pioneering works in real-time metric-semantic
mapping is SLAM++ [8], where semantic objects are rep-
resented with CAD models and their poses are optimized
independently. Recent studies such as SemanticFusion [10],
Mask-Fusion [12], and Voxblox++ [13] have developed dense,
voxel-based semantic maps, utilizing the map’s geometry
to enhance frontend segmentation. The Sni-SLAM [17] is
proposed as the NeRF semantic mapping method. Table I
summarizes some of them. As our closest work, Kimera [2]
leverages a CPU-based framework (built upon VoxBlox)
that uses RGB-D or stereo sensing to produce dense maps
and employs visual-inertial odometry for motion estimation,
mainly focusing on indoor environments. Conversely, our
approach is specifically designed for the challenges of out-
door environments, introducing four major enhancements:
1) LiDAR-visual-inertial sensing, which offers an extended
measurement range, thereby substantially broadening the
applicability of semantic mapping; 2) enabling the construc-
tion of large-scale maps in real-time through the application
of GPU parallelization techniques; 3) introducing a compre-
hensive real-world and campus-scene semantic segmentation
dataset; 4) further leveraging the resulting metric-semantic
map for localization and global planning purposes.

C. Terrain Traversability Recognition

The difficulty of navigation in unstructured environments
mainly stems from variations of terrains. Several works [26]
obtain traversability maps by extracting geometric attributes of
the surface from LiDAR, including slope, height variation, and
roughness, etc. But in many unstructured environments, path
boundaries are commonly unclear and hardly inferred from
geometry. Several following works [15], [24], [27] employ
semantic segmentation to identify traversability by encoding
prior human knowledge. The work most similar to ours is
TNS [27], which generates a 2D traversability grid map by
combining semantic and geometric information to develop an
autonomous excavator application. In comparison, our work
focuses on constructing a 3D global metric-semantic map,
which offers a more comprehensive and versatile represen-
tation for environments. We use the map to benefit several
tasks such as localization and motion planning. Real-world
navigation experiment with a robot is demonstrated.

III. PRELIMINARIES

A. Sensor Configuration

This paper employs a LiDAR-Visual-IMU (LVI) con-
figuration for data collection in mapping, leveraging the
complementary strengths of each sensor in outdoor envi-
ronments. The IMU offers high-rate linear acceleration and
angular velocity measurements for accurate motion estimation.
LiDAR provides 3D point clouds for direct measurement of
environmental structures, unaffected by changes in illumi-
nation or viewpoint. Cameras capture dense RGB images,
enabling fine-grained object classification, though they require
external processing for 3D structure recovery. Despite the
potential of RGB-D sensors for depth information, their per-
formance is limited by distance and lighting variations.

Our mapping system leverages the LVI setup to simulta-
neously estimate the robot’s real-time states and construct
a global metric-semantic map. Utilizing the active sensing
capabilities of LiDAR for consistent geometric measurements
across frames, we develop a LiDAR-centric odometry for
precise state estimation. Metric mapping employs LiDAR
data to create SDF-based environmental representations, while
semantic segmentation is achieved through camera data for
pixel-wise object labeling, effectively differentiating between
similar structures like roads and sidewalks. These labeled
images feed into a semantic mapping module, linking map
elements with 2D labels via projection. We precede the
detailed mapping system exposition with an introduction to
basic notations and the sensor calibration process.
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B. Notions and Definitons

In this paper, we consider the minimal LVI setting shown
in Fig. 4(a). Frames of the world, LiDAR, IMU, and camera
are defined as ()w, ()l , ()b, ()c respectively. The IMU frame
is commonly treated as the base frame. We use t ∈ R3 and
R ∈ SO(3) to represent the 3-D translation and rotation.
Especially, the rotation matrix is from the Lie group SO(3)
where R⊤R = I, det R = 1. With these notions, we can
reprense a sensor pose like the IMU in the world frame
at time k as (Rw

bk
, twbk

). The basic element in volumetric
mapping is the voxel. Each voxel is represented by Vi , where
i denotes the index. The size of each voxel is denoted
by ν. The set of all defined semantic label is denoted by
L = {road, sidewalk, vegetation, · · · }.

C. Synchronization and Calibration

We employ a Field Programmable Gate Array (FPGA)
to synchronize sensor clocks via an external signal trigger,
ensuring minimal latency in data collection across multiple
sensors. The FPGA, receiving a pulse-per-second (PPS) signal
from the GPS, adjusts the signal frequencies for each sensor.
Spatial-temporal calibration (i.e., intrinsics, extrinsics, and
time offsets) is crucial for multi-sensor fusion. For spatial
calibration, the Matlab calibration toolbox calibrates camera
intrinsics, and we employ significant rotation and translation
movements alongside Kalibr [28] to calibrate camera-IMU
extrinsics using a checkerboard. The LiDAR-camera extrin-
sics are determined using a checkerboard-based method [29],
optimizing extrinsics by minimizing point-to-plane and line-
to-plane distances for precise LiDAR-camera data association.
Given the challenge of unknown communication latency and
processing time, we optimize the transformation between
LiDAR and camera frames rather than estimating time offsets
directly, as detailed in Section IV-A.

IV. MAPPING

Fig. 2 shows the architecture of the proposed mapping
system. The system starts with a state estimator (see
Section IV-A), in which sensors’ poses are estimated from
sensor measurements. The semantic segmenation module (see
Section IV-B) predicts pixel-wise labels for each image. It can
be replaced by a point cloud-based segmentation network. The
metric-semantic mapping module (see Section IV-C) utilizes
multi-model data (e.g., point clouds, RGB images, labeled
images) to constructs the TSDF-based representation of envi-
ronments. The resulting mesh map consists of geometric and
semantic information of environments. It is further analyzed
by the traversability extraction module (see Section IV-D) to
support navigation tasks, i.e., localization and motion planning
(see Section IV-E. All these modules use ROS’s “Subscriber-
Publisher” mechanism to transfer data.

A. State Estimator

The state estimator utilizes LVI odometry for real-time
pose estimation. It is adapted from the R3LIVE system [30],
which integrates LIO and VIO subsystems for sensor pose

Fig. 2. Block diagram illustrating the full pipeline of the proposed mapping
system. The system starts with the state estimation (see Section IV-A). The
segmentation module (see Section IV-B) annotates each image pixel with
a label. The measurement proecssing module converts point clouds into
range and depth images. The mapping (see Section IV-C) constructs a global
metric-semantic mesh map. The resulting map is extracted with traversable
regions (see Section IV-D), and then used for localization and generating a
collision-free path by a motion planning algorithm (see Section IV-E).

and local map estimation in a coarse-to-fine approach. The
LIO subsystem uses IMU measurements for high-rate motion
propagation and LiDAR scans to construct a 3D map, focusing
on a local region to minimize memory usage. It employs an
error-state iterated Kalman filter (ESIKF) to refine LiDAR
state estimates by minimizing point-to-plane residuals. The
residual is formulated as

0 = nw⊤

j [Rw
lk

plk
j + twlk

− qwj ], (1)

where j is the index of a point in the LiDAR scan, nwj is
the normal vector of the corresponding plane, and qwj is a
point lying on the plane. The subsequent VIO subsystem
renders a 3D map with RGB color with input images, i.e., each
map point is represented as {p, c = [R,G, B]

⊤
}. It computes

camera’s pose by minimize photometric errors between frame
points and corresponding map points taking Rc

l Rlk
w as an initial

guess. We do not directly setting Rc
l Rlk

w as the camera’s pose
due to the existing of non-zero time offset between the camera
and LiDAR. The photometric error is defined as

0 = clk
j − Ik[κ(Rc

wpw + tc
w)], (2)

where κ(·) projects a 3D point onto the image plane and
I(u, v) returns the linearly interpolated RGB color at the pixel.
Unlike the original R3LIVE approach, we exclude RGB points
older than 3 seconds from the map for alignment, significantly
reducing the memory footprint. After each frame, we relay
updated sensor poses and undistorted point clouds to the
following mapping modules.

B. Semantic Segmentation

We design a network that is coupled with prototype learning
for segmentation. It is composed of an off-the-shelf segmen-
tation backbone [31], a customized segmentation head, and a
confidence head. To guide the network to pay more attention to
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the areas where the predictions are uncertain, the confidence
head is used to predict pixel-wise aleatoric uncertainty [32]
from images. The detail of the network is explained in [33].

C. TSDF-Based Volumetric Mapping

After obtaining the undistorted 3D scans (e.g., LiDAR/
RGB-D scans) and labeled images with associated poses,
our metric-semantic mapping approach incrementally builds
a dense 3D map. In traditional CPU-based serial pipeline, the
time for updating voxels’ values is linear to the number of
data. This weakness limits the usage of sensors with large
field of view (FOV) and dense measurements such as LiDARs.
The state-of-the-art method (i.e., Voxblox [14]) achieves the
nearly real-time performance with point average. But this
manner may unavoidably cause information loss. In contrast,
the mapping pipeline including the retrieval and operation of
all visible voxels is done in parallel within a GPU. Ths pipeline
consists of three key modules: measurement preprocessing
on point clouds, metric mapping, and semantic mapping.
Here we introduce the details.

1) Measurement Preprocessing: As commonly done in
learning-based approaches [34], point clouds are often con-
verted into images and then processed in GPUs. With the
known specifications of a LiDAR (i.e., horizontal and vertical
angular resolution 1φ and 1θ as well as the starting vertical
angle θ0), we project an undistorted point cloud onto a
depth image D and height image H . Such images are very
lightweight (100KB v.s. 10MB). Each pixel from D and H is
calculated by the corresponding point as follows:

D(u, v) = Fr, H(u, v) = F(z + O),

u =
π − arctan(y, x)

1φ
, v =

arccos(z/r)− θ0

1θ
, (3)

where (x, y, z) is the point’s coordinate, z is its Euclidean
distance to the origin, and F and O are two scalars.

2) Metric Mapping: The volumetric mapping divides the
space into a set of voxels Vi . Each voxel has a unique global
coordinate vi ∈ Z3, from which the raw coordinate of its
center is xi = νvi = [x, y, z]⊤ (ν is the voxel size). Voxels
are stored using a two-level hierarchy approach [35]. The first
level implements a hash table that maps 3D grid indices to
VoxelBlocks. This hash table can be queried in GPU kernels
using an interface based on stdgpu [36]. Each VoxelBlock
contains a small group of densely allocated 8 × 8 × 8 voxels
which are stored contiguously in GPU memory. In the second
layer, each voxel insided in the block can be accessed.

In TSDF-based mapping, each voxel stores a truncated
signed distance Di , a weight Wi to indicate the confidence, and
a normalized gradient vector gi ∈ R3 of the signed distance.
Both VoxBlox and NvBlox define Di as the projective distance
that is equal to the distance along the sensor ray to the
measured surface of each voxel. Di < 0 means that the voxel is
behind the surface. Instead, we utilize non-projective distance,
as described in [37], by leveraging normal and gradient vectors
to characterize the local planarity of surfaces and provide
an approximation of the true distance. Fig. 3 visualizes the
non-projective distance di . For each incoming depth and height

Fig. 3. The non-projective distance uses the local planarity of surfaces to
approximate the true distance di . ψi is the projective distance of the voxel. The
gradient vector is computed as the weighted average of normal vectors. di is
calculated according to equ.(4). The radius of the curved surface (approximate
to a circle) in (b) is marked as r .

image, we first compute the normal image N. The normal
of each pixel is computed as N(u, v) =

(p j,1−p j )×(p j,2−p j )

∥(p j,1−p j )×(p j,2−p j )∥
,

Where p j,1 and p j,2 correspond to points back-projected
from D(u, v − 1) and D(u − 1, v), respectively. We traverse
and ray-cast each pixel to retrieve visible voxels. The non-
projective signed distance is then defined as

di =

 | cos θ |ψi , if α ≈ 0

|
(cosα − 1) sin θ

sinα
| + | cos θ |ψi otherwise,

(4)

where θ is the angle between the ray and the gradient gi and
α is the angle between the gradient and the surface normal
corresponding to p j . We define τ as the truncated distance
and Wi =

ψ+τ

2τ as the linear weight. The distance Di,k and
weight Wi,k of Vi are updated at the k th input data as follows

Di,k+1 =
Wk Dk + Wi0(di , τ )

Wi,k + Wi
, Wi,k+1 = Wi,k + Wi ,

0(d, τ ) =

{
min(d, τ ) if d ≥ 0
max(d,−τ) if d < 0.

(5)

3) Semantic Mapping: Given the k th label image Ik and the
associate pose, our semantic mapping only retrieve and update
visible and valid voxels (W > 0) within the camera frustum
by raycasting. Similar to the metric mapping, each voxel is
projected onto the image plane to obtain the corresponding
semantic label. Different from the metric mapping, we pro-
pose that each voxel stores a discrete probability distribution,
P(ls) over the set of class labels, ls ∈ L. Each new voxel
is initialized with a uniform distribution over the semantic
classes, as we begin with no a priori evidence as to its latent
classification. Besides labels, the segmentation network in
Section IV-B also outputs per-pixel probability image O(u,v)

over the class labels P(O(u,v) = ls |Ik). We can update the
probability distribution of the i th voxel by means of a recursive
Bayesian update [38]:

P(ls |I1,...,k) =
1
Z

P(ls |I1,...,k−1)P(O(u,v) = ls |Ik), (6)

where Z is a constant. The segmentation network may pro-
duce incorrect labels, while (6) associates label hypotheses
from multiple images and combine evidence iteratively. After
that, the global metric-semantic mesh is extracted using the
marching cubes algorithm [39], where the label of each vertex
is extracted from the one with the highest probability.
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D. Traversability Extraction

Traditional methods are either based on visual features [40]
or geometric structures [41], having limitations in complex
unstructured environments with many road variations. The
detection of traversability should consider both robots’ mobil-
ity and human instructions. Robots’ mobility is typically
formulated according to their kinomatic properties. Regarding
the latter factor, the introduced semantic information that
encodes human knowledge benefits two aspects: identifying
untraversable terrains and guiding robots to follow basic
driving rules. Therefore, this section proposes a traversability
extraction method that jointly considers geometric and seman-
tic information from the resulting map Mw.

1) Analysis of Geometric Properties: The 3D mesh map,
represented as the polygon mesh is a collection of vertices,
edges, faces, and labels [20]. Each face provides normal
information that is suitable for terrain assessment. We analyze
the below geometric properties to determine whether the road
is traversable or not from the geometric perspective: height
difference vhd , steepness vs , and roughness vr . Fig. 8 visualizes
some examples. The “height difference” and “steepness” are
used to indicate the risk of collision. And the “steepness”
indicates the changing height of terrain. A vertex is selected
if its vhd , vs , and vr are all larger than thresholds thd , tv, tr .
After that, we get the filtered mesh map Mw′

.
• Height Difference refers to the maximum difference in

elevation between two points within a local region (i.e.,
a ball B with radius r ): vhd = arg max

vi ,v j ∈B
∥vi − v j∥.

• Steepness refers to the degree of incline of a surface:
vs = arccos(nvi ).

• Roughness refers to the irregularities and unevenness of
a ground: vr =

1
|B|

∑
v∈B nv.

2) Analysis of Semantic Properties: Due to the limited FoV
of cameras, several vertices in the resulting map Mw′

may not
be labeled and are removed. The labeled vertices indicate the
categories or classes of objects in the environment. In our
approach, we can establish a strict definition of traversability
based on prior knowledge and specific requirements for a par-
ticular robot. For example, we can classify “road” regions as
drivable for vehicles (as shown in Fig. 4(b)), while “sidewalk”
or “grass” regions are not.

E. Localization and Motion Planning

The resulting map plays a critical role in subsequent navi-
gation tasks, serving as the global map for localization and
planning. We extract vertices from Mw to form a global
point cloud map. We use the prior map-based localization
method [42] to obtain the real-time global pose of the vehi-
cle by registering the map of the current scan. For motion
planning, we project the vertices of the above traversable map
onto a 2D occupancy grid map. Each grid cell is drivable
if its associated “occupancy probability” is zero (see Fig. 8).
To compute a collision-free and optimal global trajectory from
an initial point to a specified goal, we utilize the search-based
hybrid A* algorithm. This algorithm incorporates heuristics
while accommodating the vehicle’s nonholonomic constraints,

Fig. 4. (a) The mapping device that consists of a high-resolution LiDAR
and camera is used to collect data for the environmental mapping. (b) The
real-world vehicle provides a platform for testing the navigation system.

enabling the generation of viable and smooth trajectories.
A series of equidistant waypoints is discretized from the
resultant path and then taken by the vehicle’s speed controller.

V. EXPERIMENT

We perform the mapping experiments on both public and
self-collected datasets. First, for benchmarking, we perform
experiments on three public datasets: the SemanticKITTI,
the SemanticUSL, and the FusionPortable dataset. Second,
we validate the proposed traversability extraction and motion
planning method, with the demonstration of real-world navi-
gation tests on an autonomous vehicle.

A. Implementation Details

The mapping system is mainly implemented with C++ with
CUDA, while the semantic segmentation is implemented in
Python with the Pytorch library. The mapping algorithms are
tested on two computing platforms: a desktop PC equipped
with an Intel i9-12900KF CPU, 64GB of RAM, and an
Nvidia GeForce RTX 3080Ti GPU, as well as an embedded
Nvidia Jetson ORIN 32GB computer. Besides public datasets,
we also collect real-world data to test our mapping method.
We use a handheld multi-sensor device (see Fig. 4(a)) to
collect data. The device is installed a OS1 LiDAR (resolution:
128 × 1024), two FILR BFS-U3-31S4C global-shutter color
cameras, and one STIM300IMU. During the data collection,
the average movement speed is around 5m/s. In real-world
navigation experiments, we use the autonomous vehicle [43]
(see Fig. 4(b)) for tests. The vehicle is mounted with four
16-beam LiDARs and one Livox mid-70 LiDAR. Table II
shows parameters that are empirically set in experiments. The
voxel size is different in SemanticKITTI 00, 02, 08 since the
scope is very large and GPU memory is limited to store all
voxels.

B. Dataset

This section presents the segmentation dataset that is
collected at the campus and used to train our semantic segmen-
tation network. We collect 15 data sequences covering most
outdoor places of the campus and annotate 1092 images of size
2048 × 1536. We split 95% and 5% images into the train and
validation set, respectively. Unlike existing datasets [44] that
focus on urban areas, our dataset consists of many types of
terrains (see Fig. 5) and anomaly objects, which is beneficial to
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TABLE II
PARAMETERS IN EXPERIMENTS

Fig. 5. We show a few samples from our dataset (top) and corresponding
annotations (bottom). All images are collected at the campus.

downstream tasks including planning and navigation of ground
robots. The network is pretrained on both the Cityscales [44]
and our dataset, obtaining the 54.53% Mean Intersection Over
Union (mIoU) on the validation set.

C. Metric-Semantic Mapping Experiments

1) Evaluation Metrics: We extract vertices from the recon-
structed metric-semantic mesh map produced by our method
for evaluation. The set of vertices form a point cloud M that
is compared with respect to the ground-truth point cloud G
based on five metrics: Reconstruction Error (RE) in terms of
the RMSE, Chamfer Distance (CD), Reconstruction Coverage
(RC), mIoU, and Accuracy of Correctly Labeled Points (Acc).
The latter two metrics evaluate the quality semantic segmen-
tation of the resulting map [5].

• Reconstruction Error computes the average point-to-point
distance between M and G [37]:

RE =

√√√√ 1
|M|

∑
p∈M

min(2ν, ∥ p − q∥)︸ ︷︷ ︸
d( p,G)

2, (7)

where ν is the size of a voxel and q ∈ G is the nearest
point to p.

• Chamfer Distance computes the Chamfer-L1 Dis-
tance [45] as:

CD =
1

2|M|

∑
p∈M

d( p,G)+
1

2|G|

∑
q∈G

d(q,M). (8)

• Reconstruction Coverage is defined as the ratio between
the number of GT points that do have a nearby point from
M (≤ 2ν) and the point number of G [37].

• Semantic Mapping Score is calculated in terms of the
Mean Intersection Over Union (mIoU) and Accuracy of
Correctly Labeled Points (Acc) [5].

2) Baseline Methods: We compare our proposed mapping
method with two state-of-the-art TSDF-based mapping meth-
ods: VoxBlox and VoxField, which are proposed in [14]
and [37], respectively. Both of them are CPU-based mapping
methods, but they do not support semantic mapping and
traversability extraction. Our approach improves the non-
projective distance calculation of VoxField by redesigning the
weighting strategy. It also has much difference from VoxField
in implementation, including measurement preprocessing,
retrieval of visible voxels, and mesh generation using the
marching cube algorithm. The other baselines should be vari-
ants of our method that use the original projective distance cal-
culation (Ours-Proj) and does not use the recursive Bayesian
Filter in semantic mapping (Ours-wo-Bay), respectively.

3) Results on Public Datasets: Both SemanticKITTI and
SemanticUSL are two datasets that provide dense annotations
for each LiDAR scan. Sequences 00–10 from SemanticKITTI
and sequences 03, 12, 21, 32 from SemanticUSL are taken for
evaluation since ground-truth labels and maps are provided.
We utilize pretrained Cylinder3D [46] that is a state-of-the-
art LiDAR-only semantic segmentation approach to generate
semantic measurements in experiments. For experiments on
FusionPortable, we only compute RE, CD, and RC socres
since this dataset does not provide semantic annotations.
Sequences Garden_Night (GN), Canteen_Night (CN), Gar-
den_Day (GD), Canteen_Day (CD), Escalator_Day (ED),
Building_Day (BD), and Campus_Road_Day (CRD) are taken
in tests. Fig. 6 visualizes the resulting mesh map of several
sequences. Since CRD does not provide the ground-truth map,
only qualitative results are shown.

Quantitative results on all sequences are given in Table III.
The average computation time reported in the table con-
sists of processing time of these modules: normal image
estimation, metric mapping, and semantic mapping. The non-
projective distance calculation is validated to be effective since
it improves the construction accuracy of VoxField and ours in
terms of RE and CD, as compared with VoxBlox and Ours-
Proj. Due to the advanced implementation of our methods,
scores of RE, CD, and time are the highest for the most
sequences. Ours has the lower coverage on SemanticKITTI and
SemanticUSL datasets than VoxBlox does since our method
removes unreliable LiDAR points that do not have normal or
stay at a large incline angle (especially for ground points),
making some voxels empty. These empty voxels do not have
valid distance values, and thus cannot generate mesh. Data
were collected in indoor buildings of the FusionPortable
dataset. Most of LiDAR points are kept, and thus the RC of
ours is large. Furthermore, both scores of mIoU and Acc of
ours are larger than Ours-wo-Bay’s, indicating the utility of
recursive Bayesian update in maintaining the consistency of
semantic information.

We conduct supplementary experiments to assess the influ-
ence of factors such as measurement noise, varying view
angles, and limited observations on map construction. Due to
the page limit, we show these results in the website.

4) Qualitative Results on Self-Collected Datasets: We use
the mapping device to collect data in the campus. We collected
two typical sequences that contain objects including roads,
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Fig. 6. Results of the global map on four public sequences. Semantic labels
are shown as colors on maps except for the FusionPortable dataset. Both (a),
(b), and (c) use the same color scheme to (e) does.

sidewalks, terrain, vegetations, vehicles, and buildings, which
are appropriate to test our metric-semantic mapping method.
Fig. 7 visualizes the resulting metric-semantic map that is
aligned with the statllite image. Colors of each point of the
map indicate the label. Due to the limited field of view of the
camera, plenty of points are not annotated.

5) Timing: Table IV reports the detailed computation time
regarding each step, with comparison of VoxBlox and Vox-
Field. We take the typical sequence 00 of SemanticKITTI as
an example which has over 0.24 km2. Most of computations
of mapping are done in GPUs and very fast, even on the Jetson
ORIN. Computing normals on a range image requires around
0.2ms. The metric mapping module that processes each new

Fig. 7. Semantic maps are created from the self-collected datasets: sequence
00 (top) and sequence 01 (bottom). Maps are manually aligned with images
to show the specific meaning of labels. Traversable regions are then extracted
from these maps. In navigation experiments, we command a vehicle to drive
through goals that are marked in (b) and (d). Third-view pictures that show
how the vehicle drives are presented in Fig. 9.

frame takes an average of 1.0ms, including gathering visible
voxels by ray tracing as well as updating their distance and
weight. The semantic mapping module needs to find visible
voxels and update their class probabilities via. the Bayesian
filter, costing around 1.0ms. Our method with the 3080Ti
GPU only takes an average of 32.3ms to update the global
metric-semantic mesh at a fixed frequency.

D. Point-Goal Navigation Experiments

1) Results of Traversability Extraction: After computing
geometric properties (i.e., “height difference”, “steepness”, and
“roughness”) of the resulting metric-semantic mesh map for
the two self-collected sequences, we visualize these values
in Fig. 8. Considering the vehicle’s mobility, objects that are
not traversable such as cars, buildings, and trees are easily
distinguished and filtered out by setting thresholds. But for
the sidewalk (designed for pedestrians) and grassland which
are not traversable for vehicles have to be distinguished by
semantic information. By combining all geometric and seman-
tic information, we obtain the 2D occupancy map, as shown
in Fig. 8(d) and Fig. 8(i), respectively.

2) Results of Real-World Navigation: To demonstrate the
practical application of our occupancy maps in motion
planning and validate their effectiveness, we conducted a
preliminary experiment. We designated start and end points
on the map, with the resulting paths visualized in Fig. 8(d)
and Fig. 8(j). This test reveals a critical insight: paths gen-
erated without integrating semantic information inadvertently
cross through grassland areas. Such terrains, characterized
by their uneven nature, pose significant navigational haz-
ards, underscoring the vehicle’s risk of becoming ensnared.
This observation starkly highlights the necessity of semantic
insights to distinguish between traversable and non-traversable
regions, thereby ensuring the safety and reliability of the
navigation paths chosen.
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TABLE III
METRIC-SEMANTIC MAPPING RESULTS IN TERMS OF RECONSTRUCTION ERROR (↓), CHAMFER DISTANCE (↓),

RECONSTRUCTION COVERAGE (↑), SEMANTIC MAPPING SCORE (↑), AND COMPUTATION TIME (↓)

Fig. 8. Visualization of geometric properties of the resulting metric-semantic mesh map and projected 2D occupancy maps for navigation on sequence00 (top)
and sequence 01 (bottom): (a)(f) height difference, (b)(g) steepness, (c)(h) roughness, (d)(i) occupancy map using semantic information, and (e)(j) occupancy
map without using semantic information. The yellow lines in (d)(i) and (e)(j) indicate the found navigation paths, where the path in (d)(i) does not intersect
with untraversable regions.

TABLE IV
COMPUTATION TIME [ms] ON THE SemanticKITTI 00 AND

ACCELERATION RATIO COMPARED WITH VOXFIELD

We extended our research to include practical applications
by deploying the map on a real-world vehicle. Demonstrated in
Fig. 7(b) and Fig. 7(d), the vehicle was tasked with completing
two navigation tests based on a series of predefined goal
points. The motion planner successfully identified collision-
free trajectories, enabling the vehicle to navigate the prescribed
paths effectively. Visual evidence of these navigation tests is

captured in third-person photographs, as showcased in Fig. 9,
with the vehicle achieving an average speed of approximately
3m/s. For a comprehensive view of these tests, we invite
readers to view the accompanying demonstration video.

3) Discussion: Our proposed system represents a robust
and efficient mapping solution, characterized by its high
computational performance and versatile design. Crafted with
modularity at its core and seamlessly integrated with the
Robot Operating System (ROS), it offers unparalleled flex-
ibility for customization to meet diverse application needs.
Empirical evidence from our experiments underscores the
metric-semantic map’s superiority in facilitating enhanced
visualization, precise localization, and effective traversability
analysis for navigation. By embedding semantic informa-
tion that reflects human knowledge, the system adeptly
distinguishes between drivable and non-drivable areas, such
as sidewalks and grasslands. This feature not only elevates
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Fig. 9. Without driving into grassland and sidewalks, the vehicle successfully navigate via. regions that are covered by the self-collected dataset after being
given a set of goal points. These pictures are capture in places which are indicated on maps shown in Fig. 7.

the safety of autonomous navigation but also significantly
diminishes the human effort required for robotic system
implementation, marking a notable advancement over previous
efforts [43].

VI. CONCLUSION

In this paper, we introduce an online metric-semantic map-
ping system tailored for autonomous navigation, featuring
LiDAR-IMU-Visual odometry, image-based semantic segmen-
tation, TSDF-based mapping, and extraction of traversable
areas. We further integrate this mapping with a navigation sys-
tem, enhancing map-based localization and motion planning.
Our evaluation includes extensive mapping and point-to-point
navigation tests across 24 sequences from both public and
proprietary datasets in a campus setting.

Despite its strengths, our system faces limitations, notably in
GPU memory reliance, which challenges city-scale mapping
scalability (e.g., AutoMerge [47]). A potential remedy is a
submap approach, balancing voxel storage between GPU for
immediate access and CPU for less active data. Additionally,
the absence of loop correction introduces drift over time,
an issue that could be alleviated by integrating submap tech-
niques and mesh deformation optimizations for map correction
(e.g., Kimera [48]). Lastly, maintaining semantic features’
spatio-temporal consistency poses difficulties, with potential
solutions hinted at in kernel-based methods (e.g., [24]).
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