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 A B S T R A C T

Focus-tunable liquid lenses are a cornerstone in modern optical systems, enabling rapid and energy-efficient 
focus adjustments. However, the inherent fluidic dynamics of these lenses induce transient oscillations 
following focus adjustments, necessitating stabilization periods that introduce latency and hinder real-time 
autofocus performance. To overcome these limitations, this study presents a novel compact autofocus system 
leveraging an In-situ Vision Processor (IVP) coupled with a focus-tunable liquid lens. Our method introduces 
in-sensor parallel sharpness measurement and post-processed focused image acquisition during the liquid lens’s 
oscillation phase directly on the sensor, eliminating the need for the liquid lens to stabilise before capturing 
images in most traditional liquid lens based vision systems. Consequently, the system is able to capture optimal 
in-focus images for both static and high-speed dynamic objects due to its high capture-process sampling speed. 
The ‘global focus’ image can also be generated for spatial objects while the lens sweeps between diopter 
extremes, enhancing the system’s suitability for diverse applications. This technology operates with low power 
consumption (around 2.0 W ), low latency (<2 ms for single image capturing and analysis) , and low-cost ($ 
10), making it suitable for mobile and portable applications.
1. Introduction

Focus-tunable liquid lenses represent a pivotal innovation in opti-
cal technology, offering the ability to rapidly adjust focus at various 
distances. This adaptability is crucial for maintaining image sharpness 
in various scenarios, thereby ensuring the generation of high-quality 
images critical for accurate visual analysis and subsequent automated 
operations. In the realm of instrumentation and measurement, the 
ability to precisely and rapidly control focus is paramount for applica-
tions ranging from microscopy and industrial inspection to consumer 
electronics [1–3]. These lenses are known for their minimal power 
requirements and quick response, which are vital for energy-efficient 
and high-speed applications [4]. However, lens oscillation following an 
external stimulus is an inherent challenge in liquid lens technology due 
to the fluidic dynamics and the elastic properties of the lens materials. 
These oscillations arise from the interplay between the liquid’s inertia, 
membrane elasticity, and damping forces, making it difficult for the 
lens to achieve a stable focus instantaneously [5–8]. Consequently, 
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existing liquid-lens-based autofocus systems typically rely on waiting 
for the liquid lens to settle into a stable state before capturing im-
ages and proceeding with further processing. However, this waiting 
period not only introduces latency but also limits the system’s ability 
to perform rapid and continuous autofocus adjustments, which are 
essential for applications requiring real-time imaging and quick focus 
shifts. To address above-mentioned limitations, our work introduces the 
integration of a focus-tunable liquid lens with a high-speed in-sensor 
parallel computing architecture, utilizing a In-situ Vision Processor 
(IVP). This integration allows for simultaneous image capture and 
sharpness evaluation during the lens’s short transient oscillatory phase. 
By leveraging the parallel computational capabilities of the IVP, our 
system can enhance image feature extraction and analysis in real-
time, even while the lens is still adjusting its focus. This approach 
mitigates the adverse effects of oscillations by enabling continuous 
image processing without waiting for the lens to fully stabilize.
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Fig. 1. Comparison of image-based autofocus systems. (a) Autofocus system employing 
motor control for adjusting the camera’s focus relative to object distance [12,13]. (b) 
Autofocus system using a controllable liquid lens to adjust focus [14]. (c) Our proposed 
bio-inspired autofocus system integrating a compact IVP with a tunable-focus liquid 
lens, enabling image capture, processing, and focus control within one single compact 
module. (d) Schematic of the human eye accommodation system demonstrating the 
biological counterpart of autofocus involving the ciliary muscle and accommodation 
reflex [15].

Recent progress in focus-tunable lens spans a broad performance 
envelope. Kang et al. provide a survey of variable optical elements 
showing response times that range from tens of milliseconds down to 
the microsecond regime [9]. Among these platforms, the ultrasonic 
Tunable-Acoustic-Gradient (TAG) lens achieves outstanding temporal 
resolution: operating near its 70 kHz resonance. Such bandwidth has 
enabled millisecond-scale 3-D topography via encoded-search focal 
scanning (ESFS) [10] and single-shot extended-depth-of-field imaging 
in the commercial TAGLENS-T1 module [11]. This capability, how-
ever, is accompanied by a continuous ultrasonic drive of 20 W with 
extra illumination light source (≈20 W), external controller–constraints 
that remain prohibitive for mobile, UAV, and wearable systems [11]. 
Our present work addresses a complementary bottleneck: computa-
tional latency in low-power electrowetting lenses that already dominate 
embedded cameras. By relocating the focus-metric evaluation from 
controller onto IVP, we compress the system delay to 2 ms.

As depicted in Fig.  1(a), conventional vision-based autofocus sys-
tems, rely on a camera to capture images and a computer to process 
these images to evaluate focus quality. These systems typically control 
the lens position via motors through software APIs, a process that 
often results in significant system latency. This latency is caused by 
several factors: the mechanical adjustment of the lens position, the time 
required for image capture and transfer to the processing unit, and the 
slow communication between the computer and the lens system. Image-
based autofocusing methods with a liquid lens, like the one illustrated 
in Fig.  1(b), iteratively change the lens curvature to enhance specific 
image features, particularly image sharpness, under the condition that 
the scene remains static. This requires capturing multiple frames at dif-
ferent focus positions, usually requiring 4-7 different levels determined 
by a contrast-based search algorithm [16,17]. Each change in focus 
2 
level demands a pause, allowing the liquid lens to stabilize–a period 
that can last from 10 to 100 ms, varying with the type of liquid lens 
used and contributing further to the overall system delay. As can be 
summarised from Fig.  1 (a) (b), traditional autofocus imaging systems 
often incur high power costs and increased weight due to their complex 
setups, impeding their deployment in low-cost, energy-efficient appli-
cations like portable and embedded systems. These factors highlight 
limitations in instrumentation design for applications with stringent 
size, weight, and power (SWaP) constraints [18]. In contrast, the hu-
man visual system achieves real-time autofocus effortlessly through the 
ciliary body’s curvature adjustments controlled by the accommodation 
reflex, a process independent of conscious cognitive effort [19] (Fig. 
1(d)). Drawing inspiration from this biological mechanism, we propose 
a bio-inspired, compact, low-cost, in-sensor real-time autofocus system. 
This system processes all information on the IVP’s CPM, bypassing 
the need for external computing resources or specialized software that 
could introduce extra time delay, akin to retinal cells processing visual 
data before sending the processed useful information to visual cortex 
(Fig.  1 (c)). Furthermore, unlike traditional autofocus, which often 
requires multiple steps to adjust the lens for optimal focus [4,14,20], 
resulting in slower response times and increased power consumption, 
our approach needs only one single tigger to the liquid lens. The aut-
ofocus system capitalises on the lens’s oscillatory behaviour to capture 
and evaluate images in rapid succession, harnessing the IVP’s high-
speed, parallel processing capabilities. Consequently, this contribution 
not only dramatically accelerates focused image capturing but also 
simplifies the hardware architecture, enabling the real-time capture 
of sharply focused images within a power-efficient and lightweight 
embedded system.

The main contributions of this work are summarised as follows: (1) 
High-speed image capture and process for focus during lens oscillation: 
We introduce a new approach for IVP-based high-speed autofocus 
system that captures and processes images during the oscillatory phase 
of a liquid lens, triggered by a single input step ( shown in Eq. (1) where 
the 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝑉𝑓𝑖𝑛𝑎𝑙 represent the voltage before and after the trigger 
at time 𝑡0, respectively). 

𝑉 (𝑡) =

{

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 for 𝑡 < 𝑡0
𝑉𝑓𝑖𝑛𝑎𝑙 for 𝑡 ≥ 𝑡0

(1)

This enables the acquisition of sharp edge images within the short 
oscillation interval (usually within 50 ms according to the type of the 
liquid lens). In addition, we developed a ‘global focus’ technique that 
assembles an in-focus composite image for spatial objects by stacking 
individual focus responses obtained during the lens’ oscillatory motion. 
(2) In-Sensor computing method for focus evaluation: Our research 
presents an innovative, high-speed method for parallel in-sensor image 
contrast measurement for real-time focus evaluation, requiring only 0.3
ms per evaluation. This facilitates the precise tracking of rapid contrast 
fluctuations throughout the lens’ oscillation cycle. This methodology 
bypasses the traditional requirement for the lens to stabilise before 
image capture and processing, which is a common limitation in con-
ventional machine vision systems. (3) Compact, energy-efficient, and 
low-cost autofocus system: This study proposes a compact, high-speed, 
and low-cost autofocus system that seamlessly integrates a IVP with a 
liquid lens. The resulting system is not only lightweight and energy-
efficient but also outperforms conventional autofocus mechanisms in 
speed and portability. Our in-sensor processing operates at over 500
fps (frames per second), with a latency below 2 ms, including the 
time taken and transfer for image display. The image capture and 
processing are rapid enabling high-speed sampling of the lens’ dioptric 
adjustment in response to electrical stimuli. Moreover, with a modest 
power consumption of around 2.0 W, the system sets a standard in 
energy efficiency for autofocus.
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Fig. 2. (a) The mechanical structure of the dual-fluid liquid lens. (b) The process of liquid lens adjusts to the final diopter after stimulus. The focal power (diopter) is changing 
rapidly from initial diopter to its maximum, in which process the goal diopter associated with a focused image is passed. The whole time for the liquid lens to settle consists of 
response time and oscillation time. The Goal dpt corresponds to the optimal optical power required for achieving a focused image.
2. Design and working principle

Liquid lens oscillations, induced by rapid voltage changes [21], 
can transiently degrade image quality due to focus fluctuations. While 
typically a drawback requiring a stabilization period before image cap-
ture, we exploit this phenomenon to accelerate autofocus. Our system, 
leveraging rapid in-sensor imaging and computation, analyzes image 
contrast during these oscillations. This allows us to identify and capture 
the optimally focused image much faster than waiting for stabilization, 
effectively transforming a limitation into a key feature. Our approach 
is grounded in the principle that well-focused images exhibit higher 
high-frequency content compared to defocused images. Specifically, we 
utilize edge-based sharpness metrics, benefiting from established, effi-
cient algorithms readily implementable in our hardware. This ensures 
both high performance and accurate sharpness measurement, critical 
for our application. Therefore, we propose a high-speed, parallel, in-
sensor sharpness measurement method to directly identify optimal 
focus during lens curvature adjustment.

2.1. Focus-tunable liquid lens for autofocus

The liquid lens employed in this study is a dual-fluid zoom lens 
based on the electrowetting effect [22], with its structure illustrated 
in Fig. 2 (a). Inside the resonant cavity (shown in Fig. 2 (a)), two 
different liquids with refractive indices of 𝑛1 and 𝑛2 are present. By 
controlling the interface curvature of the dual liquids with voltage, the 
focus f  of the liquid lens can be adjusted. The relationship between the 
focal length and the working voltage can be described by combining 
the Young-Lippmann equation [23] (Eq.  (2)) and the lens fabrication 
equation [24] (Eq.  (3)), as Eq.  (4):

cos 𝜃 = cos 𝜃0 +
𝜀𝜀0

2𝑑0𝛾12
(2)

1
𝑓

= (𝑛1 − 𝑛2)
1
𝑅

(3)

𝑓 = 𝐷

2(𝑛1 − 𝑛2) cos 𝜃0 +
𝜀𝜀0(𝑛1−𝑛2)

𝑑0𝛾12
⋅ 𝑉 2

(4)

where, 𝐷 represents the clear aperture of the liquid lens; 𝑛1 and 𝑛2 are 
the refractive indices of the conductive liquid and the insulating liquid, 
respectively; 𝜃 denotes the contact angle between the liquids, with 𝜃
0

3 
being the initial contact angle when no voltage is applied; 𝑅 is the 
radius of curvature of the interface; 𝜀 and 𝜀0 are the dielectric constants 
of the insulating film and vacuum, respectively; 𝑑0 is the thickness of 
the insulating film; 𝛾12 is the interfacial tension; and 𝑉  is the applied 
voltage.

Liquid lens oscillatory model during focusing: The behaviour 
of the liquid lens under applied voltages which modifies its curvature 
and thus focal length, correlates with the oscillations observed in the 
lens’s dioptric power over time, demonstrating the lens’s dynamic focus 
adjustment in response to electrical stimuli. Fig. 2 (b) illustrates the 
dynamic response of a liquid lens when an external stimulus (such as 
voltage change) is applied. The response period is the time between 
the application of the stimulus and the beginning of the first significant 
change in focal power. This delay could be due to the time it takes for 
the electric field to affect the fluid, causing it to change the curvature 
of the lens. The dynamic process of the liquid lens triggered by voltage 
change can be modelled using a damped oscillation, which can be 
described by a function of the Eq. (5):

𝑃 (𝑡) = 𝑃0 + 𝐴𝑒−𝛾𝑡 cos(𝜔𝑡 + 𝜙) (5)

where 𝑃0 is the initial optical power (the starting point of the os-
cillation), 𝐴 is the amplitude of the oscillation which is related to 
the voltage change, 𝛾 is the damping coefficient (which represents 
how quickly the oscillations decay), 𝜔 is the angular frequency of the 
oscillation, 𝜙 is the phase shift. Fig.  2(b) presents a temporal profile 
of the lens’s focal power (diopter), demonstrating oscillatory/damping 
behaviour following an electrical stimulus. The focal power is shown 
to rapidly vary from its initial state, reaching a peak before settling 
towards the final diopter within a short period of time. This fluctuation, 
represented by the black curve, occurs around a red dotted line that 
signifies the goal diopter, indicating moments when the system has 
the potential to capture in-focus images. Fig.  2(b) conceptualises the 
lens’s focus adjustment trajectory as it transitions from the nearest 
focus point to the farthest. The blue straight lines depict the range 
of the focus stacking area, converging on the goal focus position. 
This demonstrates the lens’s capacity to transition through multiple 
focal points, enabling a composite image to be constructed from the 
sharpest segments captured during the oscillation, a process essential 
for achieving a ‘global focus’ image in spatial object imaging. The 
principle of this work assumes that during the transition from minimum 
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Fig. 3. IVP system and the liquid lens. (a) Qianxun IVP vision system. (b) The 
computational pixel matrix chip. (c) The micro-controller. (d) The focus-tunable liquid 
lens.

to maximum focal power, an optimal focal power exists at which a 
focused image can be obtained, provided that the IVP operates at a 
sufficiently high speed to capture and process the image effectively. It 
is important to note that the amplitude A of this oscillation, and thus 
the range of optical powers traversed, is dependent on the magnitude 
of the applied voltage step. Consequently, the range of object distances 
over which autofocus can be achieved in a single triggered event is 
determined by the specific parameters of this driving signal.

2.2. In-situ vision processor

IVP represents a significant advancement in imaging and process-
ing technology, enabling processing signals directly on the sensor. 
This integration minimizes data transfer and external computation, 
greatly reducing latency and power usage. Notable IVP architectures 
like Qianxun (Fig.  3), High-Speed Vision Chip [25], and Eye-RIS [26] 
vision system have demonstrated parallel processing, improving speed 
and efficiency for tasks such as edge detection and object tracking 
[27] [28]. As depicted in Fig.  3, the Computational Pixel Matrix (CPM) 
is configured with 320 × 320 pixels, constituting the core of the 
Qianxun vision chip. Beyond the CPM, the architecture of the Qianxun 
chip integrates a Microcontroller Unit (MCU) dedicated to command 
instruction management and sequence data processing within a System-
on-a-Chip (SoC) framework. This integration facilitates streamlined 
control and efficient data handling, enhancing the overall system per-
formance and scalability. The SoC design ensures that the IVP can 
manage complex tasks autonomously, reducing the need for external 
processing units and minimizing latency. Qianxun IVP system achieves 
a power consumption of approximately 1.5 W, while delivering a 
computational efficiency of 1 Tera Operations Per Second per Watt 
(1 TOPS/W). This high efficiency underscores the system’s suitability 
for power-constrained applications, making it an ideal solution for 
portable and mobile imaging devices. The advanced manufacturing 
process not only enhances performance but also contributes to the 
system’s compactness and reliability.

2.3. High-speed in-sensor parallel sharpness measure

2.3.1. In-sensor parallel image edge extraction
4 
Algorithm 1 Parallel Sobel Filter Implementation
Require: 𝐼 : Input image
Require: 𝑇 : Threshold value
Ensure: 𝑓𝑜𝑐𝑢𝑠_𝑚𝑒𝑎𝑠𝑢𝑟𝑒: Focus evaluation output 
1: // Compute vertical gradient 𝐺𝑥 in parallel for each pixel: 
2: 𝑉 ← 𝐼𝑖−1,𝑗 + 2 × 𝐼𝑖,𝑗 + 𝐼𝑖+1,𝑗
3: 𝐺𝑥 ← 𝑉𝑖,𝑗−1 − 𝑉𝑖,𝑗+1
4: |𝐺𝑥| ← |𝐺𝑥|

5: // Compute horizontal gradient 𝐺𝑦 in parallel for each pixel: 
6: 𝐻 ← 𝐼𝑖,𝑗−1 + 2 × 𝐼𝑖,𝑗 + 𝐼𝑖,𝑗+1
7: 𝐺𝑦 ← 𝐻𝑖+1,𝑗 −𝐻𝑖−1,𝑗
8: |𝐺𝑦| ← |𝐺𝑦|

9: 𝐸𝑑𝑔𝑒 ← |𝐺𝑥| + |𝐺𝑦|

10: // Apply threshold and compute focus measure 
11: If 𝐸𝑑𝑔𝑒 > 𝑇 , then mark as edge (e.g., set to 1), else 0 
12: 𝑓𝑜𝑐𝑢𝑠_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ← sum of all edge marks

The autofocus mechanism, a quintessential component in modern 
imaging systems, leverages edge detection algorithms to ascertain the 
optimal focus. This process is predicated on the premise that the 
sharpness of an image is at its zenith when the edges within the image 
are rendered with maximum clarity and distinction. Therefore, contrast 
detection is one of useful criteria to determine whether an image is 
well focused. The Sobel operator is a discrete differentiation operator 
that computes an approximation of the gradient of the image intensity 
function, which can be parallelly implemented on the IVP for high-
speed edge extraction, making it an ideal choice for efficient hardware 
implementation in our in-sensor computing approach. It is worth not-
ing that while other edge detection operators, such as the Laplacian 
operator commonly used in focus variation metrology, were considered 
during our preliminary investigations, the Sobel operator was selected 
for implementation. This decision was based on its superior balance 
of computational efficiency for parallel execution on our specific IVP 
architecture (achieving edge map generation in 0.013 ms) and its 
demonstrated robustness in providing a distinct sharpness peak for 
focus evaluation across various imaging conditions encountered in our 
experiments. The Sobel operator’s inherent smoothing characteristics 
also contribute to better noise resilience compared to second-order 
derivative operators like the Laplacian, which is advantageous for 
high-speed image processing during lens oscillation.

The Sobel operator uses two 3 × 3 convolutional matrices, 𝐺ℎ and 
𝐺𝑣, to detect edges in the horizontal and vertical directions respec-
tively. The matrices are as follows:

𝐺ℎ =
⎡

⎢

⎢

⎣

−1 0 1
−2 0 2
−1 0 1

⎤

⎥

⎥

⎦

𝐺𝑣 =
⎡

⎢

⎢

⎣

−1 −2 −1
0 0 0
1 2 1

⎤

⎥

⎥

⎦

(6)

The convolution of an image 𝐼 with the Sobel matrices is performed 
to find the gradients 𝐺ℎ(𝐼) and 𝐺𝑣(𝐼) at each pixel: 

𝐺ℎ(𝐼(𝑥, 𝑦)) = 𝐼(𝑥, 𝑦) ∗ 𝐺ℎ, 𝐺𝑣(𝐼(𝑥, 𝑦)) = 𝐼(𝑥, 𝑦) ∗ 𝐺𝑣 (7)

where ∗ denotes the convolution operation. The gradient magnitudes 
at each pixel are then computed using: 

𝐺(𝑥, 𝑦) =
√

𝐺ℎ(𝐼(𝑥, 𝑦))2 + 𝐺𝑣(𝐼(𝑥, 𝑦))2 (8)

The high-speed parallel implementation of the above-mentioned 
algorithms on the IVP can be seen from Alg. 1, which is mainly 
realised by parallelly operating on the parallel computing circuit for 
parallel computing including shifting, addition, subtraction, and taking 
absolute value. By leveraging in-sensor parallel computing techniques, 
the sobel edge can be efficiently obtained using just 0.013 ms in-sensor. 
We define a sharpness metric that evaluates image sharpness in Eq. 
(9) operating directly on the CPM, thus reducing latency and power 
consumption while achieving real-time focus.
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Fig. 4. Sharpness profile of an autofocus system with a liquid Lens: this graph plots the sharpness against the working distance, revealing the optimal focus point where sharpness 
peaks. This figure shows sample images at various working distances, demonstrating the progression from blurry to sharp and back to blurry, corresponding to the near, best focus, 
and far points on the curve, respectively. The units of the horizontal and vertical coordinates are millimetres and quantity, respectively.
 

𝑀(𝑡) =
𝑊
∑

𝑥=0

𝐻
∑

𝑦=0
𝐺𝑖(𝑥, 𝑦, 𝑡) (9)

where 𝑀(𝑡) represents the focus evaluation function, 𝑡 ∈ [0, 𝑇 ]
and 𝑇  denote the total adjustment time for the liquid lens. The focus 
evaluation function 𝑀(𝑡) is derived from the intensity gradient of the 
image, which measures edge strength. This metric is directly propor-
tional to the output of edge detection algorithms, as higher gradient 
values correspond to sharper transitions in pixel intensities. As shown 
in Fig.  4, the sharpness curve rises to a peak where the edges in the 
image are most pronounced, indicating optimal focus. At suboptimal 
focus distances, the intensity gradients are reduced due to blurring, 
which attenuates high-frequency components in the image, thereby 
lowering the edge output and sharpness metric. This relationship has 
been experimentally validated by comparing edge detection results and 
the corresponding sharpness values across multiple focus distances. The 
results confirm that sharpness values increase proportionally with edge 
strength, reinforcing the validity of using the intensity gradient-based 
metric for focus. Based on the sharpness evaluation, we can determine 
the optimal focus by solving Eq.  (10), where 𝑡𝑓  is the optimal time for 
image acquisition that associated with a focused image.

𝑡𝑓 = argmax
𝑡

𝑀(𝑡) (10)

2.3.2. Focus measure and evaluation
The fundamentals for autofocusing is the Gaussian distribution of 

high-frequency image features, such as sharpness, which can determine 
the optimal focus by maximising the used features via focus tuning as 
shown in Fig.  4.

The IVP leverages advanced parallel processing techniques to achieve
efficiency and speed in focus measurement. At the core of its com-
putational method is a parallel summation approach, which enables 
in-sensor computation of the focus measure by summing the edge 
pixels directly. This parallel processing approach allows the IVP to 
complete focus measurements in just 0.32 ms, showcasing its high-
speed capabilities. The parallel nature of the IVP’s architecture is 
5 
Algorithm 2 In-Sensor computing for focused image during lens 
oscillation
Require: 𝐴𝑀𝑝𝑖𝑥: the raw image; 𝐷𝑀𝑒𝑑𝑔𝑒: edge image; 𝐷𝑀𝑓𝑜𝑐𝑢𝑠: focused image
Require: 𝑡: recorded time; 𝑇𝑠𝑡𝑎𝑏𝑙𝑒: liquid lens stable time without oscillation 

(usually lasts 40-60 ms); 𝑀 : current Sobel filter response; 𝑀𝑚𝑎𝑥: Maximum 
Sobel filter response; 𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒: photo detector exposure time

1: 𝑆𝑡𝑎𝑟𝑡
2: trigger lens to adjust diopter from smallest to largest {lens starts to 
oscillate} 

3: while 𝑡 < 𝑇𝑠𝑡𝑎𝑏𝑙𝑒 do 
4: Record 𝑡 {record current time} 
5: Reset 𝐴𝑀𝑝𝑖𝑥
6: photo-sensors exposure for 𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒
7: Capture 𝐴𝑀𝑝𝑖𝑥
8: 𝐷𝑀𝑒𝑑𝑔𝑒 ← 𝑓𝑓𝑖𝑙𝑡𝑒𝑟(𝐴𝑀𝑝𝑖𝑥) {Compute image edge using Soble filter} 
9: 𝑀 ← 𝑓𝑝𝑖𝑥𝑒𝑙𝑠𝑢𝑚(𝑅𝑒𝑑𝑔𝑒) {Compute contrast sharpness using in-sensor 

parallel summation method} 
10: if 𝑀 > 𝑀𝑚𝑎𝑥 then 
11: 𝑀𝑚𝑎𝑥 ← 𝑀 {Store max filter response} 
12: 𝐷𝑀𝑓𝑜𝑐𝑢𝑠 ← 𝐷𝑀𝑒𝑑𝑔𝑒 {Store the edge image}
13: end if
14: end while
15: display 𝐴𝑀𝑓𝑜𝑐𝑢𝑠

further exploited in implementing multiple algorithms simultaneously 
on the CPM. These algorithms include image edge extraction, focus 
measure calculation, and evaluation, all of which occur concurrently 
during the brief period of lens focus adjustment. This parallelism is 
key to the system’s efficiency, as it eliminates the need for sequential 
processing and reduces overall computational time. The IVP’s parallel 
processing capabilities allow for rapid computation of this function 
across multiple focal points simultaneously, enabling quick determina-
tion of the maximum sharpness and, consequently, the optimal focus. 
The computational efficiency of the IVP is further enhanced by its 
ability to perform these complex calculations directly on the sensor. 
This in-sensor computing approach minimizes data transfer overhead, 
a common bottleneck in traditional image processing systems. By 
processing data at its source, the IVP significantly reduces latency and 
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Table 1
Focus evaluation performance comparison (ms).
 Platforms Imaging Sobel edge  Focus measure In total 
 IVP 0.1 0.013 0.32 0.433  
 FPGA 0.612 0.52 1.1 2.232  
 CPU 0.612 15 20 35.612  
 ARM 2.2 150 55 207.2  
increases overall system speed. The detailed algorithms for in-sensor 
computing during lens oscillation are outlined in Alg. 2 The parallel 
implementation of these algorithms on the IVP’s CPM exemplifies how 
the system’s computational theory translates into practical speed and 
efficiency gains in real-time autofocusing applications.

3. Experiments and results

3.1. Algorithm performance comparison among various platforms

To present the performance of the proposed parallel algorithms 
based on the IVP, this section provides a comparison with three widely-
used computing platforms: FPGA, CPU, and ARM Cortex, using iden-
tical algorithm configurations with the same-size image input. It is 
important to note that the ‘Imaging’ category in Table  1 includes the 
exposure time, image capturing, and image transmission durations. 
Specifically, the platforms utilized in this study include the FPGA 
Xilinx Virtex-7, CPU Intel Core i7-9700K, and ARM Cortex-A53. In 
conclusion, when compared to other prevalent platforms, the proposed 
method demonstrates superior performance in terms of computational 
efficiency, power consumption, and cost-effectiveness (Table  1).

3.2. Hardware system setups

Our compact in-sensor focusing system mainly includes two key 
components:

1. Qianxun IVP system: The core computational unit, the IVP, 
processes image data directly in situ, facilitating rapid and accu-
rate focus monitoring without the need for external processing 
power.

2. Liquid Lens: LK-10M357.1Y01 from [29]: This liquid lens fea-
tures a variable curvature, adjustable via serial communication, 
enabling quick refocusing in response to changes in the visual 
field. It consumes approximately 0.5 W  of power and offers 
various continuously tunable focus levels. The lens has a di-
agonal field of view (FOV) of 29.8◦, and an aperture f/7.1. 
With a minimum working distance of >150 mm, it is well-suited 
for high-speed embedded vision applications and seamlessly 
integrates with the IVP-based autofocus system. Operating Tem-
perature: −10 ◦C to 50 ◦C. The liquid lens is integrated into a 
lens module that also includes a 35 mm primary fixed-focus 
lens. The liquid lens component provides the focus tunability 
for this module. The effect of the liquid lens’s tuning results in 
an overall focal length adjustment for the entire lens module 
from approximately 22.9 mm to 42.4 mm. This range allows our 
system to achieve autofocus over various working distances.

As depicted in our system setup (Fig.  5), Our system setup is 
designed to replicate conditions found in embedded automation envi-
ronments. By presenting objects at varying distances, we demonstrate 
the system’s adaptability and efficiency in real-time machine vision 
tasks. This setup allows us to test the system’s performance in high-
speed, dynamic scenarios. The IVP communicates with liquid lens via a 
serial RS232 communication protocol. This protocol enables the IVP to 
send control signals to the liquid lens, directing it to adjust its curvature 
as required to maintain or change focus. The synchronization of these 
components is critical, allowing the system to achieve rapid refocusing 
capabilities essential for high-speed and high-accuracy imaging tasks. 
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Operating at a Baud Rate of 115200, the protocol achieves an excep-
tionally low instruction transmission latency of approximately 0.087
ms between the IVP and the liquid lens. This minimal delay is crucial 
for maintaining continuous and smooth focus transitions, particularly 
in applications requiring rapid and precise image adjustments.

Fig.  6 illustrates the commonly-used test objects selected for vali-
dating the performance of our in-sensor computing system’s autofocus 
functionality: (a) a QR code, presenting a common pattern in daily life 
to evaluate focal precision with size of 68 × 68 mm. (b) an alphabet 
series, employed for their ubiquity in evaluating textual clarity and 
sharpness with size of 105 × 105 mm. (c) a USAF resolution test chart, 
the established benchmark for resolving power assessment with size of 
107 × 137 mm. This array encapsulates a spectrum of testing environ-
ments to thoroughly check our system’s image processing capabilities 
across diverse visual patterns with different sizes.

In the initial phase of our experiments, we presented three dif-
ferent patterns at varying distances in front of our autofocus system. 
Upon initiating the test, the IVP dispatched signals to the liquid lens 
to commence its focus adjustment from the nearest to the farthest 
point. Concurrently, the IVP begins to capturing images and computing 
real-time sharpness.

Fig.  7 demonstrates the liquid lens’s autofocus response across a 
variety of test objects, marked by distinctive peaks indicating the 
moments of optimal focus. These peaks, a result of the lens’s damped 
sinusoidal behaviour and the Gaussian distribution of the sharpness 
along focus, represent the global maxima in sharpness. These data 
points are recorded before and after the command (CMD) switching 
from focus level 40 to 10 corresponding to the change of liquid lens 
curvature. CMD switch means a rapid voltage change to the liquid lens. 
Noteworthy is the lens response latency between command initiation 
and lens response, which our system precisely monitors in real-time, ef-
ficiently analyzing the sharpness of the captured images. The consistent 
pattern of sharp peaks – displayed across test objects such as a QR code, 
alphabet, and USAF test chart–confirms the system’s ability to swiftly 
monitor focus from the lowest to the highest levels and to accurately 
detect and respond to varying focal conditions. Fig.  7(d) presents the 
focus measurement values for dynamic objects, showing similarities 
to the results obtained from the static scene. The fluctuations in Fig. 
7(d) primarily result from the continuous motion of the dynamic object 
during the autofocus process. Unlike static scenes in (a) - (c), where the 
liquid lens response is primarily influenced by its internal stabilization 
dynamics, the autofocus system for dynamic objects must account for 
additional variability introduced by object motion. These fluctuations 
arise as the system attempts to compensate for real-time positional 
changes in the object, requiring rapid adjustments to the lens curvature.

Moreover, the edge quality is evaluated using following two meth-
ods to test the focus accuracy of our proposed systems. (1) Intersection 
over Union (IoU), is a statistic used for gauging the similarity and 
diversity of sample sets. The Jaccard Index measures the similarity 
between two sets of data. For binary image segmentation, it can be 
defined as the size of the intersection divided by the size of the union 
of the segmented regions. It is formulated as: 𝐽 (𝐴,𝐵) = |𝐴∩𝐵|

|𝐴∪𝐵| , where 𝐴, 
𝐵 represents the groundtruth edge image and the focused edge image, 
respectively. (2) The Dice coefficient (DSC) quantifies the similarity 
between two sets of data. In image segmentation, it evaluates the 
accuracy of a segmentation by measuring the overlap between the 
predicted segmentation Y and the ground truth X, calculated as 𝐷𝑆𝐶 =
2×|𝑋∩𝑌 | .

|𝑋|+|𝑌 |
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Fig. 5. The compact autofocus system: (1) IVP, (2) liquid lens, (3) converter and cable from IVP to the liquid lens, (4) display interface, (5) a miniature fan for dynamic test, (6) 
speed controller. Signals are synchronized by serial RS232 communication through UART interface.
Fig. 6. Three different test patterns. (a) QR code, (b) Alphabet, (c) USAF test dart.
Fig. 7. The liquid lens response measured by the IVP for four different objects after a control command switch. (a) to (c): static scene, (d) dynamic scene.
Fig.  8 presents the experimental focus results for a series of static 
objects, tracking the progression from initial capture to a focused edge 
image, and ultimately comparing these results to the ground truth. 
The sequence captures the IVP’s real-time edge detection capabilities 
at various time intervals, demonstrating the system’s ability to refine 
the image detail as it approaches the optimal focus. The QR code, 
a text sample, and the USAF resolution test chart serve as subjects 
to challenge the system’s focus under static conditions. The focused 
edge images reveal a contrast against the ground truth, validating the 
precision and effectiveness of the in-sensor computing during liquid 
lens oscillation and its suitability for applications demanding high 
levels of image processing speed in static image focus.

3.3. Autofocus for dynamic object

Given the high-speed imaging and processing capacity of our pro-
posed autofocus system and associated algorithms, we formulated an 
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experiment focusing on responsive measurements for dynamic objects. 
The experimental configuration, depicted in Fig.  5, involves the uti-
lization of a standard USB interface miniature fan (size: 96 × 8 mm) 
connected to a power source via a fan speed controller. Throughout 
the experiment, we configured the fan speed to 192 rpm and rotated 
it clockwisely. Subsequently, we modulated the liquid lens focal length 
from its minimum to maximum extent by giving a command switch, 
recording the corresponding focus measurement values throughout the 
procedure to substantiate the system’s precision concerning dynamic 
objects.

Fig.  8 (bottom row) illustrates the process of capturing dynamic 
moving objects: a series of four images arranged from left to right, 
demonstrating the adjustment of the liquid lens focal length from its 
lowest to farthest level. The ground truth image was captured with a 
fixed focal length while the fan was stationary. During this experiment, 
the visual system IVP recorded image data at intervals of around 2 ms 
including image capturing, processing and outputting for display. In 
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Fig. 8. Experimental focus results for static objects (first three rows) and a dynamic object (fourth row).
Table 2
Sharpness measure accuracy and focused time.
 Patterns Object distance (mm) IoU (%) Dice (%) Focus time (ms)  
 QR code 320 75.7 86.2 45.7  
 Alphabet 320 75.2 85.8 41.9  
 Test chart 300 78.2 87.7 42.9  
 Rotating fan 300 70.1 82.0 44.2  
 Spatial objects 130, 320, 820 – – <42.0, 45.6, 49.1 
Fig.  8, the progression from initial capture to focused edge images is 
visually compared against the ground truth, demonstrating the system’s 
capability to refine image detail as it approaches optimal focus. This 
qualitative validation is further supported by the quantitative results 
in Table  2, which shows high Intersection over Union (IoU) and Dice 
coefficients across different patterns, confirming the accuracy of the 
focused edge images. The short focused times, as indicated in the 
table, also highlight the effectiveness of the in-sensor computing sys-
tem in achieving rapid focus adjustments, validating its suitability for 
applications requiring high-speed image processing. The experimental 
findings confirm that our proposed autofocus system achieves practical 
performance when applied to both dynamic and static objects.

3.4. Autofocus for spatial objects

Our research advances the domain of autofocus in imaging systems 
by employing an innovative method that harnesses lens oscillation for 
rapid focus adjustment of spatial objects. Unlike conventional systems 
that depend on multiple lens positions, which are typically slow and 
power-hungry, our approach utilizes the natural oscillation of a liquid 
lens coupled with high-speed in-sensor sampling to swiftly adjust focus, 
resulting in efficient power consumption and processing. The proposed 
system operates by sweeping the liquid lens across various focus levels 
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Algorithm 3 High-Speed In-Sensor ‘Global Focus’ for Spatial Objects
Require: 𝐴𝑀1, 𝐷𝑀𝐿, 𝐷𝑀𝑚: image, edge response, ensembled edge image
Require: 𝐴𝑀𝑝: the image acquisition array (the photo-sensors)
Require: 𝛥𝑇 : exposure control 
1: while 𝐿𝑒𝑛𝑠 𝑂𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑃 𝑒𝑟𝑖𝑜𝑑 do 
2: 𝐴𝑀1 ← 𝐴𝑀𝑝𝑖𝑥 {Load current image} 
3: 𝐴𝑀𝑝𝑖𝑥 ← 𝑓 (𝐴𝑀𝑝) {Start light integration for the next image} 
4: 𝐷𝑀𝐿 ← 𝑓𝑓𝑖𝑙𝑡𝑒𝑟(𝐴𝑀1) {Edge image process} 
5: if 𝑅𝐿 < 𝜃 then 
6: 𝐷𝑀𝐿 ← 0 {Discard pixels with low maxima}
7: end if
8: 𝐷𝑀𝑚 = 𝑂𝑅(𝐷𝑀𝑚, 𝐷𝑀𝐿)
9: wait 𝛥𝑇  {Control 𝐴𝑀𝑝𝑖𝑥 exposure}
10: end while
11: trigger depth-frame readout of 𝐷𝑀𝑚

and capturing a series of local focus images. These images are then 
aggregated to form a single, globally-focused image. By executing 
high-speed image contrast measurements within the sensor, our sys-
tem identifies and synthesizes the sharpest edges for each frame in 
milliseconds, significantly accelerating the autofocus process.
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Fig. 9. Edge Image Progression through Liquid Lens Oscillation. (a) The transition of focus from near to far within a single oscillation period of the lens, demonstrating the 
dynamic focus adjustment capability of the system.(b) The stages of in-sensor edge detection, highlighting the system’s efficiency in edge refinement without requiring stabilization 
of the lens. The varied colours represent different object distances, with changes depicted as the focus shifts.
Table 3
Autofocus system performance comparison.
 Work Hardware setup Method Autofocusing System  
 speed power  
 [12] PC with Intel i9, RTX2080, motor Gaussian standard deviation 500 ms >100 W 
 [30] PC with Intel Core2, motor look-up table 126.2 ms >50 W  
 [13] PC with Intel i5, motor ARSM >1000 ms >20 W  
 [31] PC with Xeon, high-speed camera Brenner gradient 15.8 ms >100 W 
 [32] CompactRIO-9049, high-speed camera LSTM 150 ms >60 W  
 [33] PC with Intel i7,high-speed camera histogram feature – >20 W  
 [14] PC with AMD R7 CNN and DFF 251.8 ms >65 W  
 [34] PC with Intel i7, RTX2080ti, motor CNN >250 ms >100 W 
 [10] TAG lenses with controller and light source ESFC ms-level 40 W  
 Ours IVP system In-Sensor sharpness measure <50 ms 2 W  
Fig.  9 illustrates the proposed autofocus system in action. A set 
of objects, including an ‘Edge Focus Image’, ‘Medium Shot’ sign and 
a QR code, are positioned at varying distances from the IVP. As the 
liquid lens oscillates, it fluctuates the focus from the nearest object to 
the farthest, sequentially bringing each object into sharp relief. This 
dynamic process results in a comprehensive capture of focused edge 
information across multiple focal planes. Alg. 3 details the autofocus 
process for spatial objects: it leverages the 𝐷𝑀𝐿 to temporarily store 
the edge information. Through logical 𝑂𝑅 operations, these edge details 
are accumulated in the 𝐷𝑀𝑚. The culmination of this process is a 
‘global focus’ image, which conveys focused edges from the entire range 
of oscillation. The entire cycle, from initiating the lens movement to 
achieving a global edge-focused image, is completed within a mere 30
ms excluding lens response time, showcasing the speed and efficiency 
of our system. 𝜃 is a user-defined parameter to reduce influence from 
noise. Table  2 summarises the autofocus system performance in terms 
of edge accuracy and time. The proposed compact autofocus system 
is able to obtain the comparatively high-quality edge image within a 
short period of time. Additionally, Table  3 presents a comprehensive 
performance comparison of the proposed autofocus system with related 
systems, evaluating methods, efficiency, and power consumption. No-
tice that, the focused time include the liquid lens response time and and 
oscillation time as shown in Fig.  2. With a quicker responsive liquid 
lens, a shorter focus time can be expected.

4. Discussion

The primary performance bottleneck of the proposed compact aut-
ofocus system is the response latency of the liquid lens, measured at 
approximately 15–20 ms. This latency significantly constrains over-
all system responsiveness. While the latency introduced by digital 
frame output could be mitigated through faster readout circuitry (e.g., 
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a USB 3.0 interface), further performance gains, approaching near-
instantaneous optimal focus capture, would require a liquid lens with a 
reduced response time. Furthermore, in well-lit outdoor environments, 
the integrated light source may be unnecessary, simplifying system 
configuration.

It is important to note that while our method efficiently finds focus 
within a single triggered lens oscillation (as described in Alg. 2 and 
3), if the object of interest lies outside the dioptric range covered by 
that specific oscillation, it will not be brought into focus in that at-
tempt. This is a general consideration for focusing systems. A complete 
autofocus implementation based on our principle would incorporate a 
higher-level control strategy to manage such scenarios, for example, 
by initiating subsequent triggers with different voltage step parameters 
to explore a wider focal range until a satisfactory sharpness peak is 
detected.

In addition, like other autofocus systems relying on contrast or edge-
based sharpness metrics, the performance of our proposed system can 
be challenged in scenes with very few discernible edges or extremely 
low overall contrast. In such conditions, the reduced gradient informa-
tion would lead to a less distinct sharpness peak, potentially affecting 
the accuracy and reliability of the autofocus process. The system is 
designed to excel in environments where sufficient edge or texture 
information is available for robust sharpness evaluation.

Regarding the ‘global focus’ image, while effective for static spatial 
objects, significant object motion during the lens oscillation period 
(<50 ms) would result in a composite image that captures an envelope 
of the object’s sharp features over its trajectory, rather than a single, 
motion-frozen all-in-focus snapshot.

5. Conclusions

This work has developed first efficient in-sensor autofocus system 
that integrates a IVP with a liquid lens using proposed parallel image 
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processing methods. This innovative system delivers over 500 fps with a 
latency of less than 2 ms, covering image capture, processing, and useful 
data transfer. Notably, it maintains energy efficiency with around 2 
watts of power consumption, marking an advancement over traditional 
autofocus technologies. Uniquely, it utilizes the liquid lens oscillation 
period for rapid imaging and in-focus image processing, setting it 
apart from traditional autofocus technologies. The compactness, rapid 
processing speed, cost-effectiveness, and low power consumption make 
our system suitable for portable and embedded applications, especially 
in scenarios requiring the detection of fast-moving objects.

In the future, we aim to integrate the proposed system with a 
mobile platforms, enabling machine vision systems with the capability 
of effective imaging and processing despite vibrations. Furthermore, 
key improvements will focus on higher resolution sensors, advanced 
readout circuit designs, and a liquid lens with a quicker response time 
to enable more research and practical possibilities.
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