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SLC2-SLAM: Semantic-Guided Loop Closure Using
Shared Latent Code for NeRF SLAM
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Abstract—Targeting the notorious cumulative drift errors in
NeRF SLAM, we propose a Semantic-guided Loop Closure using
Shared Latent Code, dubbed SLC2-SLAM. We argue that latent
codes stored in many NeRF SLAM systems are not fully exploited,
as they are only used for better reconstruction. In this letter, we
propose a simple yet effective way to detect potential loops using
the same latent codes as local features. To further improve the loop
detection performance, we use the semantic information, which are
also decoded from the same latent codes to guide the aggregation
of local features. Finally, with the potential loops detected, we close
them with a graph optimization followed by bundle adjustment
to refine both the estimated poses and the reconstructed scene.
To evaluate the performance of our SLC2-SLAM, we conduct
extensive experiments on Replica and ScanNet datasets. Our pro-
posed semantic-guided loop closure significantly outperforms the
pre-trained NetVLAD and ORB combined with Bag-of-Words,
which are used in all the other NeRF SLAM with loop closure.
As a result, our SLC2-SLAM also demonstrated better tracking
and reconstruction performance, especially in larger scenes with
more loops, like ScanNet.

Index Terms—SLAM, loop detection, localization, semantic
scene understanding.

I. INTRODUCTION

U SING a RGB-D camera as the primary sensor, dense
simultaneous localization and mapping (SLAM) aims at

estimating the self-motion, i.e. poses, of an agent while recover-
ing the dense 3D reconstruction of its surrounding environment.
Dense SLAM is the core to a wide range of spatial artificial
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intelligence (AI) applications, including autonomous robots and
systems, embodied AI, and metaverse applications. Thus, it has
been a popular research area in the robotics and computer vision
communities.

Over the past decade, the field has seen remarkable ad-
vancements in dense SLAM, alongside a growing integration of
SLAM systems with neural networks. Early dense SLAM sys-
tems, such as KinectFusion [3] and ElasticFusion [4], prioritized
precise geometrical reconstructions of environments, enabling
detailed spatial modeling. Then, incorporating pre-trained neu-
ral networks, dense SLAM systems have evolved to provide
enhanced scene comprehension [5] and increased resilience
against cumulative drift errors [6]. This synergy has expanded
the scope of SLAM, transforming it from purely geometric
mapping to a more semantically aware, robust system capable of
more accurate and stable performance in complex environments.

More recently, the introduction of neural radiance fields
(NeRF) [7] has showcased the powerful scene representation
capabilities of multi-layer perceptrons (MLP). By encoding 3D
scenes implicitly within the weights of an MLP, it generates
compact neural implicit maps, which not only reduce the storage
requirements of large-scale reconstructed scenes but also allow
for efficient bundle adjustment of both estimated poses and the
reconstructed map. Due to these advantages, NeRF has gar-
nered substantial interest for developing dense SLAM systems
that leverage neural implicit representations [8]. Pioneered by
iMAP [9] and NICE-SLAM [10], a series of NeRF SLAM
systems have emerged, showing notable advances in reconstruc-
tion quality [11], tracking precision [12], and overall system
efficiency [2]. These developments represent a promising shift
toward more accurate, storage-efficient, and computationally
feasible dense SLAM solutions.

Comparatively, much less attention has been paid to address
the cumulative drift errors in NeRF SLAM systems. Existing
implementations of loop closure in NeRF SLAM generally
follow one of three main approaches: (1) employing hand-
crafted local features with global descriptor aggregation, such
as ORB features [13] paired with Bag-of-Words (BoW) descrip-
tors [14]; (2) utilizing pre-trained place recognition models,
like NetVLAD [15]; and (3) applying a simple covisibility
score-based method. However, none of these techniques offer
an optimal solution for NeRF SLAM. Covisibility score-based
methods are too simple to close the loops with large drifts,
while the other approaches require additional efforts for local
feature extraction. These added steps not only increase com-
putational overhead but also risk losing relevant information
unique to NeRF representations, highlighting the need for a more
specialized loop closure strategy tailored to the NeRF SLAM
framework.
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Recognizing that recent NeRF SLAM systems commonly uti-
lize InstantNGP-style [16] mapping for efficiency, where latent
codes are learned on-the-fly and stored throughout operation,
we observe that these latent codes’ potential as local features for
loop detection has been underutilized. In this letter, we introduce
Semantic-guided Loop Closure using Shared Latent Code for
NeRF SLAM (SLC2-SLAM), a simple yet effective approach
specifically designed to leverage these latent codes for effective
loop detection within NeRF SLAM systems. In particular, our
method uniquely repurposes these latent codes, initially intended
solely for scene reconstruction, as local geometric features
which are then aggregated into a global descriptor. To enhance
this aggregation process, we incorporate semantic information,
also decoded from the latent codes, guiding the selection of local
latent codes for better aggregation. After identifying potential
loops, we close the loop with a pose graph optimization, fol-
lowed by bundle adjustment, to refine both the estimated pose
and the reconstructed map.

We rigorously evaluate the performance of our SLC2-SLAM
with extensive experiments on Replica [17] and ScanNet [1]
datasets. Our method shows significant improvement in loop de-
tection capabilities, achieving an average recall rate of 0.662—
outperforming the closest competing approach, which achieves
only 0.277. This enhanced loop detection also contributes to
superior tracking accuracy and reconstruction quality, particu-
larly evident in the larger scenes from the ScanNet dataset, as
illustrated in Fig. 1.

Our main contributions are summarized as follows:
� To the best of our knowledge, we are the first to exploit the

latent codes stored in many NeRF SLAM system not only
for scene reconstruction but also for semantic segmentation
and loop detection.

� We conduct extensive experiments on publicly available
datasets and our SLC2-SLAM consistently outperforms
existing methods, achieving state-of-the-art performance
in loop detection, reconstruction quality, and competitive
performance in tracking accuracy.

II. RELATED WORK

A. NeRF SLAM With Latent Codes

To enhance the reconstruction quality of NeRF SLAM sys-
tems, many approaches leverage latent codes to capture local
scene structures, reducing the burden on the MLP for detailed
map representation. While various terms such as features, em-
beddings, or latent codes are used across the literature, we refer
to them collectively as latent codes here for consistency.

Vox-Fusion [11] pioneered the integration of neural implicit
maps with explicit voxel structures by attaching on-the-fly
learned latent codes to voxel vertices and utilizing an octree
for efficient voxel indexing. Similar concepts also appear in
systems like Co-SLAM [2], ESLAM [18], and VPE-SLAM [19].
Both Co-SLAM and VPE-SLAM followed voxel representa-
tions, but with distinct encoding design. Co-SLAM [2] builds
on the InstantNGP [16] framework, introducing a joint coor-
dinate and parametric encoding with multi-resolution hashing
and One-blob encoding. VPE-SLAM, alternatively, presents a
voxel-permutohedral encoding that merges sparse voxels with
multi-resolution permutohedral tetrahedral. Contrasting with
voxel-centric approaches, ESLAM [18] specifically favors a
plane-based representation to retain latent codes.

Fig. 1. Tracking and reconstruction results on the scene0054 of ScanNet [1].
With semantic-guided loop closure, our SLC2-SLAM achieved better tracking
and reconstruction performance. In contrast, our base system Co-SLAM [2]
exhibits obvious misalignment, especially evident in the areas in the pink
bounding boxes.

Building on this hybrid map representation, various works
have been published to improve the systems’ performance
from different aspects. For a richer scene understanding, both
SNI-SLAM [20] and NIS-SLAM [21] expand NeRF SLAM
by generating semantic maps, allowing for detailed scene la-
beling. Regarding the accuracy of the reconstructed geometry,
Hu et al. [22] address issues related to incomplete depth data
by introducing attentive depth fusion priors into the volume
rendering process. In terms of robustness, HERO-SLAM [23]
tackles abrupt viewpoint changes by implementing a hybrid
enhanced robust optimization, while RoDyn-SLAM [24] im-
proves dynamic object handling by removing dynamic rays from
the reconstruction process with motion masks generated from
optical flow and semantic information.

B. NeRF SLAM With Loop Closures

Loop closures are necessary to all SLAM systems to ensure
robust operation in larger-scale environments. As outlined in the
previous section, current loop closure approaches typically use
one of three strategies: (1) covisibility scores, (2) the pre-trained
NetVLAD [15] model, or (3) ORB [13] features in combination
with BoW [14] descriptors. Additionally, NeRF SLAM sys-
tems can be broadly categorized by their approach to camera
pose estimation: Coupled NeRF SLAM, which estimates poses
directly through inverse NeRF optimization, and Decoupled
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Fig. 2. System Overview. Our proposed SLC2-SLAM consists of four main components. At its core, there is a hybrid scene representation with latent code
voxel hashing and three MLPs. Then, we have tracking module, mapping module, and semantic-guided loop closure module that interact with the hybrid scene
representation to perform tracking, mapping, and loop closure.

NeRF SLAM, which leverages external SLAM systems for
tracking.

For Decoupled NeRF SLAM systems, their choice of loop clo-
sure heavily rely on the type of tracker utilized. When employing
DROID-SLAM [25], as seen in systems like Go-SLAM [26] and
HI-SLAM [27], the covisibility score—derived from the mean
rigid flow—becomes the preferred option for loop detection due
to its compatibility with DROID-SLAM’s tracking mechanism.
Alternatively, ORB-SLAM [28], [29] is also widely used, fea-
turing in systems such as Orbeez-SLAM [30], NEWTON [31],
NGEL-SLAM [32], and the system by Bruns et al. [33]. These
systems inherit ORB-SLAM’s loop closure capabilities, relying
on ORB [13] features paired with BoW [14] descriptors for
robust loop detection. Despite their strong tracking performance,
these systems frequently encounter challenges in achieving
high-quality reconstructions, as their focus on loop closure
methods does not fully address limitations in fine-grained scene
detail.

In Coupled NeRF SLAM systems, where tracking and re-
construction are tightly integrated, various approaches have
been explored for loop closure. For instance, MIPS-Fusion [34]
introduced multi-implicit-submaps and performed submap-level
loop closure by computing the covisibility between current
frame and inactive submaps. However, this loop detection ap-
proach has limitations, primarily being effective for correct-
ing only small drifts. Vox-Fusion++[35] instead relied on a
pre-trained NetVLAD [15] model for loop detection and im-
plemented a hierarchical pose optimization for robust loop
closure. Similarly, Gaussian splatting SLAM systems such as
GLC-SLAM [36] and LoopSplat [37] also employed NetVLAD
for loop detection. Another approach, Loopy-SLAM [38] favors
the combination of ORB [13] features and BoW [14] descriptors
for loop detection, despite that these features were not part of the
tracking or reconstruction process. It can be seen that all these

systems require additional feature extraction steps to achieve
loop closure.

We argue that existing NeRF SLAM systems have not fully
leveraged the latent codes inherent in their maps. By focusing
solely on using these codes for reconstruction, they overlook
the valuable potential of these latent codes in aiding loop detec-
tion directly, an oversight that our proposed approach seeks to
address.

III. SYSTEM DESIGN

As shown in Fig. 2, our SLC2-SLAM comprises 4 compo-
nents. At its core, we use a hybrid scene representation with
voxel-centric latent codes and three shallow MLPs. Interacting
with this scene representation, we have a tracking module that
estimates the 6 ◦-of-free (DoF) poses of the input frame, a
mapping module that is in charge of the keyframe manage-
ment and scene representation optimization, and a semantic-
guided loop closure module that detects loops by aggregating
on-the-fly learned latent codes and closes them with pose graph
optimization.

A. Hybrid Scene Representation

Although our SLC2-SLAM is able to work with any NeRF
SLAM systems with latent codes, as we have reviewed above, we
base our system on the Co-SLAM [2], modify it to incorporate
semantic information, and carry out all the experiments.

Following Co-SLAM, we use a sparse set of voxels, that are
indexed by a hash table, with a learnable compact latent code at-
tached to each voxel center/vertices for coordinate encoding, and
employ OneBlob encoding for parametric encoding. Regarding
the shallow MLPs, our scene representation contains three: the
GeomNet, ColorNet and SemNet. In particular, the GeomNet
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takes in the latent code v(x) and the parametrically encoded
position γ(x), and outputs the scene geometry s, in terms of
signed distance function (SDF), and a hidden feature vector h.
Connected to the GeomNet, ColorNet and SemMet are placed
in parallel, both of which take the hidden feature vector h and
the parametrically encoded position γ(x) as input, and produce
the RGB color c and semantic label l respectively.

Then, given the input RGB-D frames and semantic masks,
both the latent codes and the weights of the three MLPs can be
learned with the following loss function:

L = λrgbLrgb + λdLd + λsdfLsdf + λfsLfs

+ λsemLsem + λsmoothLsmooth, (1)

where each λ represents a per-loss weight. Lrgb, Ld, Lsdf , Lfs,
and Lsmooth denote the loss terms for color, depth, SDF, free
space, and smooth regularization, respectively, following the
formulation in Co-SLAM [2]. The remaining, Lsem, computes
the cross-entropy loss for the semantic labels as follow:

Lsem = − 1

N

N∑
i=1

C∑
j=1

li,j log(l̂i,j). (2)

B. Keyframe Management

To strike a balance between map update frequency, loop
detection efficiency, and runtime performance, our SLC2-SLAM
introduces a hierarchical keyframe management strategy, con-
sisting of keyframes, covisible frames, and place frames.

For keyframes, we follow Co-SLAM [2] and add a new
keyframe every 5 frames. This high rate of keyframe addition
enables frequent map optimization iterations, ensuring high
reconstruction quality. However, this density of keyframes in-
troduces redundancy, which can be inefficient for loop detection
and pose graph optimization. To address this, we introduce place
frames, a sparser subset of frames within the keyframe set, to
streamline the loop detection process and enhance the efficiency
of pose graph optimization.

We determine whether a keyframe should be added as a
new place frame based on point cloud overlap. Specifically, we
calculate the overlap between the point cloud from the most
recent keyframe and those from all previously stored place
frames. If the overlap is below a user-defined threshold, τplace,
the keyframe is accepted as a new place frame. In practice,
setting τplace to a relatively low value ensures minimal over-
lap, resulting in only a few place frames per indoor room,
which efficiently covers the scene with a reduced number of
frames.

In contrast to the spatially dense keyframes, we find that, in
practice, place frames are too sparse to effectively distribute
accumulative errors detected during loop closures. To balance
between these extremes, we further introduce covisible frames,
which have an intermediate spatial density. This density is
also managed by using point cloud overlap, but with a higher
threshold, τcovis, than that of place frames. Importantly, all place
frames are also designated as covisible frames. When a loop is
detected at a keyframe, the keyframe, along with all covisible
frames, are used to construct the pose graph for optimization.
The optimization process will be discussed in detail in Section II-
I-D.

Fig. 3. Examples of semantic-guided stratified sampling (S.G.S.S) versus
random sampling (R.S.).

C. Semantic-Guided Loop Detection

To perform loop detection, we formulate it as a retrieval
task and solve it with a two-step process: generating global
descriptors from local features and matching these descriptors
with those in a database of known locations.

Unlike previous loop detection methods relying on hand-
crafted point features [13], [38] or neural features extracted
by pre-trained convolutional neural networks [15], [35], we
propose directly leveraging the latent codes stored within the
NeRF SLAM map as local features. Since these latent codes
are shared across tracking, mapping, and semantic segmentation
tasks, this approach not only removes the need for external
feature extractors but also enhances the overall efficiency of the
system.

Given the high resolution of the input images, aggregating la-
tent codes for every pixel is computationally intractable. There-
fore, we aim to select M representative pixels that best describe
the image. To achieve this, we introduce a semantic-guided strat-
ified sampling method that utilizes the semantic masks predicted
by SemNet and sets the number of samples to be proportional
to the size of each semantic region. Although naive random
sampling could be used, Fig. 3 illustrates that semantic-guided
stratified sampling provides a more accurate view representation
by identifying the easily-overlooked small semantic regions and
reducing oversampling of the dominant semantic region. The
results in Table I further demonstrate the advantages of our
semantic-guided stratified sampling over random sampling.

After gathering latent codes to represent local features, we
apply the vector of locally aggregated descriptors (VLAD) [39]
to construct global descriptors for the current keyframe and all
stored place frames. We then match these descriptors to identify
the closest place frame, forming a loop hypothesis for the current
keyframe.

To prevent catastrophic system failures caused by incorrect
loop closures, we subject each loop hypothesis to further vali-
dation using both geometric and semantic information. Specif-
ically, we calculate the overlap between the point clouds and
their semantic labels. The loop hypothesis is only accepted if
both overlaps exceed pre-set thresholds.

D. Pose Graph Optimization

Given a pose graph comprising the covisible frames discussed
in the previous section, the current keyframe as the loop frame,
and its matched place frame, we can now incorporate a loop edge
into the pose graph. This loop edge represents the relative trans-
formation between the loop frame and its matched place frame,
calculated using a standard point-to-plane iterative closest point
(ICP) [40] algorithm.
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TABLE I
LOOP DETECTION RESULTS ON SCANNET

TABLE II
AVERAGE RECALL RATE

Fig. 4. Semantic segmentation examples on ScanNet.

Once the graph is constructed, we proceed with optimiza-
tion using standard pose graph toolkits. The recent release of
PyPose [41] enables seamless integration of geometry-based
optimization with learning-based loop detection, all within the
PyTorch framework. Specifically, we employ the Levenberg-
Marquardt optimizer, establishing a trust-region strategy to dy-
namically adjust the learning rate. For a particular edge in the
pose graph, we define the loss function as follows:

ei = log
(
T−1

edgei
Tnode0T

−1
node1

)
, (3)

where Tedgesi is the relative transformation of between two
frames connected by the edge, Tnode0 andTnode1 are poses of the
two frames respectively. Then, the overall loss to be optimized
can be formulated as:

Lpg =
∑
i

‖ei‖2. (4)

After optimizing all covisible frames upon loop closure, we
use them to update the poses of the keyframes. These updated

TABLE III
TRACKING RESULTS ON SCANNET (ATE RMSE [CM]↓)

keyframe poses are then included in an additional bundle ad-
justment step, as in Co-SLAM [2], to jointly refine both the
keyframe poses and the map, which is represented by the MLPs
and latent codes.

IV. EXPERIMENTS

A. Experiment Setup

We evaluate our proposed SLC2-SLAM on two widely-used
indoor datasets: Replica [17] and ScanNetv1 [1]. Replica is a
synthetic dataset containing 18 high-fidelity replicates of differ-
ent indoor rooms, offering ground-truth dense reconstruction,
semantic and instance annotations, among other resources. In
line with other NeRF SLAM studies, we use the subset provided
in NICE-SLAM [10], comprising 2000-frame sequences from
8 out of the 18 indoor rooms. ScanNet, by contrast, is a large-
scale dataset of 1,513 sequences collected from 707 real-world
indoor rooms. Also to align with other NeRF SLAM letters, we
use scenes 0000, 0059, 0106, 0169, 0181, and 0207 for both
qualitative and quantitative evaluations.

To quantitatively assess the loop closure performance, we
collect a database of place frames and a set of query frames
from the sequences of the 6 ScanNet scenes. In particular, all
the place frames and query frames are the keyframes generated
from the sequence at intervals of every 5 frames. Then, we
use the overlap between frame-pairs as the criteria and select
a keyframe as a place frame if the overlap is lower than 0.3. All
other keyframes are used as query frame for evaluation. In total,
from the 6 ScanNet scenes, we gathered 96 place frames and
3,218 query frames.

Pushing it to the limit, we further evaluated our method on
the complete ScanNetv1 [1] under the place recognition setup.
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TABLE IV
TRACKING RESULTS ON REPLICA (ATE RMSE [CM]↓)

Following the protocols established in recent indoor place recog-
nition studies [42], [43], we utilized the test split of ScanNetv1
with spatial sparsification, resulting in 4,313 frames from 142
indoor rooms. From this set, we selected 294 frames as our place
frames for retrieval by enforcing a minimum spatial separation of
3 meters, and used the remaining 4,019 frames as query frames.
It is important to note that, compared to the loop detection
setup, the place recognition setup uses significantly sparser place
frames, making the task considerably more challenging.

Evaluation Metrics: To evaluate tracking and reconstruction
performance, we adopt standard evaluation metrics: root mean
square error (RMSE) of the absolute trajectory error (ATE)
for tracking, and accuracy (Acc.), completion (Comp.), and
completion ratio (Comp. Ratio) for reconstruction. Note that we
follow Co-SLAM [2] to perform mesh culling before evaluation,
and we refer readers to the survey letter [8] for more details
on metric computation. For loop detection, a loop candidate is
accepted if the translational pose difference with the place frame
is less than 1 m and the rotational difference is under 35 degrees.
We evaluate loop detection with three metrics—precision, recall,
and F1 score—all based on top-1 retrieval results. As for place
recognition, we follow the protocols used in [42], [43] and
compute the average recall rates for Top-K retrievals.

Baselines: We choose Co-SLAM [2] as our primary baseline,
as it serves as the foundation for our proposed SLC2-SLAM.
We then compare SLC2-SLAM to three recent NeRF SLAM
systems that support loop closure. Of particular interest are sys-
tems with a similar mapping setup, maintaining a single, global
NeRF-based map. Therefore, we select Loopy-SLAM [38] and
Orbeez-SLAM [30] for comparison. To broaden the scope, we
also include two NeRF SLAM systems [10], [22], two loop
closure-enabled NeRF SLAM systems that utilize submaps [33],
[34], a Gaussian splatting SLAM [44], and a loop closure-
enabled Gaussian splatting SLAM [36].

Regarding loop detection and place recognition, we com-
pare our semantic-guided loop detection method with two
commonly used approaches: NetVLAD [15] and the combi-
nation of ORB [13] and BoW [14]. Following the setup in
GLC-SLAM [36] and Loopy-SLAM [38], we used the
NetVLAD model pre-trained on the Pitts30 K dataset [45] and
the BoW vocabulary provided by ORB-SLAM2 [28]. Although
not yet integrated in SLAM systems, two state-of-the-art (SoTA)
Dinov2-based models, AnyLoc [46] and SALAD [47], are also
compared in the place recognition task to highlight the superi-
ority of our method.

Implementation Details: We keep most of our system and
training parameters in line with our backbone system, Co-
SLAM [2]. For the additional modules, we design our SemNet
as a 4-layer MLP with 32 hidden neurons, setting its learning

rate 0.05, and assigning a weight of λsem = 10 for the semantic
loss. Moreover, the thresholds for generating place frames and
covisible frames are set to τplace = 0.3, τcovis = 0.45, respec-
tively. When a loop candidate is validated, we perform another
10 iterations of bundle adjustment following the pose graph
optimization. All of our experiments are performed on a desktop
PC with AMD Ryzen 9 5950X CPU and NVIDIA GeForce RTX
4090 GPU.

B. Results and Discussions

Loop Detection: We present the quantitative results in Ta-
bles I and II, all recorded prior to the loop validation step.
Our semantic-guided approach shows a significant performance
improvement over these baseline and SoTA methods across all
scenes and nearly all metrics in both loop detection and place
recognition setups.

We also conducted an ablation study by removing semantic
guidance and substituting semantic-guided stratified sampling
with naive random sampling. This modification led to a notice-
able performance decline in recall and F1 score; however, our
method still outperformed NetVLAD [15] and the ORB [13] and
BoW [14] combination.

In addition, though the semantic segmentation task is not the
focus of our work but merely an assistant in the loop detection
task, we provide some qualitative results shown in Fig. 4. Quan-
titatively, our SLC2-SLAM achieves a mean intersection over
union (mIoU) of 0.6795 on the six test scenes of ScanNet [1]. In
comparison, a recent semantic SLAM system, SGS-SLAM [48],
achieves 0.6980 on the same six scenes. Although our system’s
performance is slightly lower, it is sufficient to effectively guide
the loop detection process.

Tracking: The tracking results, shown in Tables IV and III,
reveal that our approach outperforms the baseline system
Co-SLAM [2], with tracking accuracy gains of 16.16% on
Replica [17] and 12.46% on ScanNet [1]. These substantial
improvements confirm the effectiveness of our loop closure
method. Additionally, compared to other recent systems, both
with and without loop closure capabilities, our SLC2-SLAM
surpasses thess methods across most of the test scenes. Par-
ticularly in larger indoor rooms in ScanNet, our system shows
superior average tracking performance. We attribute this to our
system’s ability to detect more loops, enabling additional pose
graph optimizations that enhance tracking accuracy.

Reconstruction: The reconstruction results, both quantitative
and qualitative, are presented in Table V and Fig. 5. While we
aimed to compare our system with other loop-closure-enabled
methods, only the one by Bruns et al. [33] provided these metrics.
Thus, we compared SLC2-SLAM against three more systems
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TABLE V
RECONSTRUCTION RESULTS ON REPLICA

Fig. 5. Reconstruction examples of Co-SLAM [2], Loopy-SLAM [38], and our SLC2-SLAM on the ScanNet and Replica datasets. Compared to Loopy-SLAM,
our reconstructions are more complete for Replica scenes and better aligned and less noisy for ScanNet scenes. Compared to Co-SLAM, ours are more complete
and less noisy for both datasets. Zoomed in views are provided with highlights for better visualization.

without loop closure, including our baseline Co-SLAM [2].
As shown, our SLC2-SLAM significantly outperforms all other
methods across all three metrics, with a considerable margin in
each, underscoring the impact of our loop closure on reconstruc-
tion quality.

Memory and Runtime: Our SLC2 -SLAM operates efficiently,
consuming only 2GB video memory. Although all experiments
were conducted on a NVIDIA 4090 GPU, the system can run on
any GPU with a minimum of 4GB memory. In contrast, other
loop-implemented NeRF SLAM, such as Loopy-SLAM [38],
require GPUs with at least 12GB of memory. For runtime,
the tracking and mapping processes of SLC2-SLAM are on
par with Co-SLAM [2]. Our loop detection and pose graph
optimization achieve, on average, 1.6 seconds and 0.5 seconds
per loop, respectively. Comparatively, Loopy-SLAM [38] needs
12 seconds.

V. CONCLUSION

In this letter, we present SLC2-SLAM, a NeRF-SLAM system
featuring a simple yet highly effective loop closure method. Our

approach leverages on-the-fly learned latent codes, originally
introduced to assist 3D scene reconstruction, and repurposes
them as local features for global descriptor aggregation. To
ensure these sampled latent codes accurately represent the cur-
rent view, we introduce a semantic-guided stratified sampling,
drawing on semantic information also decoded from the latent
codes. We evaluate our SLC2-SLAM on two publicly available
datasets, comparing it to various NeRF-SLAM systems, both
with and without loop closure, and demonstrate its superior
performance.
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