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OverlapMamba: A Shift State Space Model for
LiDAR-Based Place Recognition
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Abstract—Place recognition is the foundation for autonomous
systems to achieve independent decision-making and secure op-
eration. It is also crucial in tasks such as loop closure detection
and global localization in Simultaneous Localization and Map-
ping (SLAM) technology. Existing LiDAR-based place recognition
(LPR) methods use raw point cloud representations or multifarious
point cloud representations as inputs, as well as employ convo-
lutional neural networks or transformer architectures. However,
the recently proposed Mamba deep learning model combined
with State Space Models (SSMs) has enormous potential in long
sequence modeling. Therefore, we have developed a novel place
recognition network OverlapMamba, which represents input range
images as sequences. In a novel way, we use a stochastic reconstruc-
tion method to establish shifted state space models to compress
the visual representation. Extensive experiments on three public
datasets demonstrate that OverlapMamba achieves competitive
performance with real-time inference speed, which effectively de-
tects loop closure even when traversing previously visited locations
from different directions, indicating its strong place recognition
ability and real-time efficiency.

Index Terms—LiDAR-based place recognition, localization,
SLAM, loop closure detection, mamba architecture.
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Fig. 1. Core idea of the proposed OverlapMamba model. The left parts
represent range view (RV) projection and 1-D point cloud serialization. The
right parts represent the overview of our novel state space models for place
recognition.

I. INTRODUCTION

LACE recognition (PR) is a key technology in autonomous

driving and robotics that enables vehicles and robots to
determine their location within complex environments. It plays
a vital role in various tasks such as reliable vehicle localization,
environmental mapping [1], and path planning, and effective
PR systems must operate in real-time while maintaining low
computational and memory requirements.

Previous methods relied heavily on hand-crafted features,
which struggled with viewpoint variations, environmental
changes, and failed to capture semantic relationships, leading
to poor generalization. The paradigm has since shifted towards
data-driven, learning-based PR models [2], [3], demonstrating
remarkable performance gains. While vision-based methods [4]
show promise, their limitations in challenging conditions have
led researchers to explore LiDAR-based solutions [2], [3], [5],
[6], which offer superior robustness across various environ-
ments. Recent investigations have explored multi-modal ar-
chitectures [7] and multi-view fusion networks [8], leveraging
complementary features from diverse data domains. However,
despite achieving state-of-the-art performance and real-time
operation, these sophisticated approaches incur significant com-
putational overhead, conflicting with typical PR system resource
constraints.

To recognize the same scenario, global descriptors gener-
ated by learning-based methods inherently converge towards
yaw invariance during training for place matching. Through a
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detailed analysis of existing methods, we observe that many
works [3], [8] tend to achieve yaw-invariant descriptors, while
we aim to further improve this approach with more efficient se-
quence modeling capabilities provided by Mamba [9]. Further-
more, sequential data structures demonstrate superior capability
in maintaining these properties compared to multi-dimensional
tensors [10], [11].

To address these challenges, we propose OverlapMamba, a
lightweight network for LiDAR-based place recognition that
generates yaw-invariant descriptors through spatial sequence
modeling while maintaining computational efficiency compa-
rable to Transformer-based methods. Our main contributions
are:

1) The proposal of a lightweight network that produces
high-quality, yaw-equivariant symmetric feature represen-
tations.

2) The introduction of a specialized module for LiDAR se-
quence processing, which maintains the linear complexity
and batch processing capabilities of SSMs.

3) The implement of bidirectional modeling strategy and
SHIFT strategy for better capturing important environ-
mental feature relationships.

4) Achieve leading performance on loop closure detection
and place recognition tasks on the KITTI, NCLT and Ford
Campus datasets.

II. RELATED WORK
A. LPR Based on Local Description

LPR methods using local descriptors have evolved from
handcrafted approaches to learning-based techniques. These
methods extract distinctive features from point clouds to iden-
tify previously visited locations. For example, Zhou et al. [12]
demonstrated that local 3D deep descriptors typically offer better
generalization than global features for loop closure detection in
various environments. Another significant advancement came
from Ye et al. [13] who introduced FPET-Net, an efficient
3D point cloud place recognition approach based on feature
point extraction and transformer architecture. Most recently,
Kong et al. [14] proposed an interest point-driven approach
that uses LeGO-LOAM, EdgeConv, and PointNet to generate
robust global descriptors with significantly improved perfor-
mance. However, these methods are still susceptible to viewpoint
changes and rely on substantial computing power, which face
limitations in processing sparse point clouds.

B. LPR Based on Global Description

Recent methods tend to use global descriptor to describe over-
all scene features, providing a comprehensive view of the data.
Projection-based methods typically use various representations
of data as input, such as RV, BEV and spherical view. Xieyuanli
Chen et al. [5] and others proposed a network that can solve
the problems of loop closure detection and place recognition.
This method intuitively and effectively estimates the similarity
between scan pairs by overlapping their RVs. Subsequently,
OverlapTransformer [3] was introduced as an enhanced version
of the previous model. On the basis of OverlapTransformer,
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Junyi Ma et al. [8] proposed a cross-view transformer network,
which fused RVs and BEVs generated from LiDAR data. Luo
et al. [15] developed BEVPlace, which employs yaw-invariant
group convolutions on BEV, whereas our approach focuses on
RV. In point-based methods, PTC-Net [16] introduced a novel
Point-wise Transformer with sparse Convolution architecture.
In point-based methods, MinkLoc3D [17] pioneered a sparse
voxelized point cloud representation combined with 3D convo-
lutions. However, their high computational requirements limit
the batch sizes during training.

III. OVERVIEW OF THE FRAMEWORK
A. Preliminaries

This paper explores the integration of Mamba [9] architec-
ture into SLAM techniques for enhanced place recognition and
global localization. The structured state space model (S4) based
on SSM and Mamba [9] is inspired by continuous systems,
which map a 1-D function or sequence z(t) € R to y(t) € R
through a hidden state h(t) € R . Mathematically, they are of-
ten formulated as linear ordinary differential equations (ODEs),
with parameters A serves as the evolution parameter, while
B and C act as projection parameters. The dimensionality N
represents the size of the hidden state and determines the model’s
capacity to capture complex patterns in the sequence:

B'(t) = Ah(t) + Bx(t)
y(t) = Ch(t) + Dx(t) (M

As continuous-time models, SSMs face significant challenges
when integrated into deep learning algorithms. Discretization
is necessary to overcome this obstacle, and S4 and Mamba are
discretized via Zero-Order Hold, which assumes the input signal
remains constant over each sampling interval. This transforms
the differential equation into a difference equation where A
represents the sampling interval. The discretization process can
be expressed as:

A=A
B= (A —1)A™'B )

After discretization, the linear ODEs representing SSMs can be
rewritten as (3)

hy, = Ahg_1 + By,
yr = Chy + Dy, 3)

In our OverlapMamba architecture, this discretization is imple-
mented within Algorithm 1, where A is generated dynamically
for each token through learned projection. This data-dependent
approach enables adaptive modeling of spatial relationships in
LiDAR data based on region-specific features.

In the context of LiDAR-based place recognition, A cap-
tures spatial relationships between sequential elements across
viewing angles; B transforms depth measurements into feature
space; C' projects state features to maintain place-distinctive
information; and D preserves geometric details through direct
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Overview of the proposed OverlapMamba. The overlap backbone compresses the RVs from the LiDAR sensor information into yaw-equivariant feature

sequences. The OverlapMamba block connects the feature sequences from the backbone with the multidirectionally enhanced feature sequences processed by the
SSM. The global descriptor generator (GDG) utilizes a combination of multilayer peceptron (MLP) and NetVLAD to generate a 1-D global descriptor.

connections. This parameterization processes range image se-
quences by focusing on distinctive environmental features while
handling LiDAR data sparsity.

B. Mamba-Based Place Recognition

The OverlapMamba architecture, illustrated in Fig. 2, consists
of three main components: the overlap backbone, Overlap-
Mamba block, and Global Descriptor Generator (GDG). Our
model processes RV generated from raw LiDAR point cloud
data. The projection transformation IT : R® — R? maps each
3-D point cloud P to RV R, where the process of transforming
each point p; = (z,y, z) into image coordinates (u,v) can be

expressed as:
[1 — arctan(yg, x) /7] w

(3:) - ([1 —% (arcsin (2 /r%) + fup) /f] h) (4)

where 7, = ||pg]||2 is the distance measurement for the corre-
sponding point p, f = fup + faown is the vertical field of view
of the sensor, and w, & are the width and height of the resulting
RVs, respectively. Through a detailed analysis of existing meth-
ods [3], [8], we found that vertical resolution depends on the
LiDAR scanner type, while a horizontal resolution of 900 pixels
provides optimal balance between computational efficiency and
descriptive power, capturing sufficient yaw-angle detail while
maintaining real-time processing.

We employ single-channel RVs of size 1 x h x w, applying
vertical convolutional filters while preserving width following
OverlapLeg [5], and introduce sequence pyramid pooling to
address information loss and noise amplification.

Inspired by Vision Mamba [10], we leverage Mamba’s effi-
cient sequence processing. RVs are serialized into z € R¢*1*%,
where ¢ denotes channel number and w represents width. Each
271 is processed through the [-th OverlapMamba encoder to
generate x;, which undergoes activation, normalization, and
propagation to the GDG.

For yaw-invariant feature generation, we employ
NetVLAD [18] in the GDG. Rotations of input LiDAR
data translate to shifts in the distance image while maintaining

descriptor consistency. The process is formulated as:

xy = Olm (z1-1) + 211,
n; = Norm (z;),

9 =GDG(m) ©)
where Olm/(.) represents the OverlapMamba block with residual
connection, and GDG(.) denotes the GDG that transforms the
normalized sequence into the final global descriptor.

C. OverlapMamba Block

We propose the OverlapMamba block (OLM) architecture, as
illustrated in Fig. 2, to effectively process spatial information in
range images, which often contain empty regions from occlu-
sions or missing returns. Mamba’s selective state space model
is ideal for this data through its gating mechanism that updates
hidden states based on input importance, filtering uninformative
regions while preserving structure. Unlike transformers that
allocate equal resources to all position pairs, Mamba efficiently
focuses computation on regions with discriminative features,
particularly valuable for place recognition where key environ-
mental features are unevenly distributed.

1) Bidirectional Sequence Modeling for Transformation
Equivariance: For a feature sequence Z = {z1,29,..., 2y}
with length w, a unidirectional SSM processing tokens sequen-
tially can be expressed as:

Yi = SSM(Zl, .. .,Zi)
where y; denotes the output at position . However, when a
shift operation in the sequence occurs, the transformation equiv-
arience is broken as shifted tokens access different contextual
windows, which can be expressed as:

yLS = SSM(Z(IJrs) mod w> * + +» Z(i+s) mod w) (6)
Y(i+s) mod w = SSM(Zlv «+ 5 Z(i+s) mod w) @)
yf 7é Y(i4s) mod w (8)
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Fig. 3. The SHIFT operation process. The left part shows an example of a
range image containing omnidirectional feature information. In the right part of
the figure, we demonstrate the process of randomly reconstructing the feature
sequence modeled along the horizontal direction for the yaw angle, where w is
the width of the range image and a is a random parameter used to calculate the
starting index of the reconstructed sequence.

where y; denotes the shifted variant of y; by s positions. To
preserve the transformer equivariance, we design bidirectional
SSM processing, which can be expressed as:

yi = SSM(z1,...,2i) + SSM(Flip(zw, ..., 2)) (9)
where F'lip(-) denotes the operation of reversing the sequence
order.The element-wise addition of forward and backward fea-
tures ensures complete context access regardless of cyclic shifts,
maintaining yaw equivariance. Based on this property, we can
further enhance the feature representation by leveraging differ-
ent viewing angles.

For any circular shift, our bidirectional approach maintains
equivariance in our feature representation by combining comple-
mentary context from both directions, which can be demonstraed
as:

yvs = SSM(Z(I-i-s) mod w> * + +» Z(i+s) mod w)
+ SSM(FZZP(Z(11)+9) mod w» - -

= SSM(Zl mod ws « + +5 #i mod w)(i+s) mod w
+ SSM(Flip(Zw mod w> -« -

oy Z(i-&-s) mod w))

-y 24 mod w))(i+s) mod w

= Y(i+s) mod w (10)
This equality holds because under circular shifts, the bidirec-
tional SSM processes the same token set, just with different
starting positions. The circular nature of the sequence preserves
complete context in both directions, maintaining rotational
equivariance.

2) SHIFT Operation and Yaw Invariance: The SHIFT oper-
ation is formally defined as a circular shifting function that re-
constructs the input sequence starting from a randomly selected
position:

Shlft(Z) - {Z(1+s) mod w»s Z(2+s) mod ws « - +» Z(w+s) mod 'w}
Y
where s = |a - w] is the starting index, with a being a random
value sampled from the uniform distribution [0, 1).

Token sequences inherently encode yaw information, with the
reversed sequence representing the scene from opposite viewing
directions. Due to the global nature of range images, token
sequences form a cyclic pattern at different yaw angles within the
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Algorithm 1: OverlapMamba Block Process.

Input: token sequence T;_1: (B,M,D)
Output: token sequence T;: (B,M,D)
/* normalize the input sequence T;_; */
_1: (BLM,D) < Norm(T;_1)
Xforwards Z: (B,M,E) - Linear*(T}_, ), Linear”(T;_)
/* process with random yaw and different directions*/
Xshite: (B,M,E)<— Shift(Xforwara)
Xbackward» Xshift_backward - (B,MvE)<_ Flip(xforward)» Flip(xshift)
for o in {forward, backward, shifted_forward,
shifted_backward }
xL: (B,M,E) < SiLU(Conv1d,(x))
A, + exp(Parameter?)
D, < Parameter?
A, B,, C, « Split(Linear(x)))
A, (BLMLE) Softplus(LineaIf(A))
A,, Byt BMLEN) «+ A, ®A,, A, ®B,
Y, : (B,M,E) - SSM(A,,B,,C,,D,)(x})
end for
/* gety’ */
for i in {forward, backward, shifted_forward,
shifted_backward }
vi: (BM,D) + y; ® SiLU(z)
end for
/* residual connection */
T, : (B,M,D) « Linear” (Sum(y’)) + T, 1
Return: T}

same scene, as shown in Fig. 3. While the SHIFT operation intro-
duces intentional randomness during training to improve gener-
alization across different yaw angles, it is designed to maintain
deterministic inference behavior. The random parameter used
for sequence reconstruction varies during training to simulate
different viewing angles, but the data is not processed through
branches involving stochastic reconstruction during inference
for efficiency and reliability.

Since NetVLAD is proved to have yaw invariance [3], the
GDG process also maintains yaw invariance, which can be
demonstrated as:

GDG(Z) = NetVLAD({z1,22,- s Zw})
- NetVLAD({Z(1+S) mod w» * +
— NetVLAD(Shift(Z))

-5 Z(w+s) mod w})
12)

This invariance is guaranteed through NetVLAD’s permutation-
invariant pooling. Our bidirectional SSM ensures feature sets
remain identical under circular shifts, while NetVLAD’s design
maintains invariance to feature ordering, producing consistent
global descriptors regardless of yaw angle.

3) OverlapMamba Algorithm: The OverlapMamba (OLM)
block integrates multidirectional sequence modeling for place
recognition, with operations detailed in Algorithm 1. Param-
eterized by module stacking number L, hidden state dimen-
sion D, extended state dimension E, and SSM dimension
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N, the block processes input sequences through these key
steps:

Normalization and projection: Input token sequence 7;_1 is
normalized to stabilize training before being projected through
parallel linear transformations into primary features x and gating
features z.

Directional sequence generation: Four processing paths are
created by applying forward/backward operations and stochastic
shifts to x, simulating different yaw angles during training.

Parameter generation: Each directional sequence undergoes
convolution, activation, and linear projections to generate SSM
parameters. Softplus ensures positive time-steps A for stabil-
ity, while tensor broadcasting ® efficiently applies parameters
across sequence positions.

Selective filtering: The SSM outputs are modulated by z
through SiLU activation, enabling selective feature emphasis
based on input relevance.

Integration: All directional outputs are combined and pro-
jected back to the original feature space, with a residual connec-
tion preserving gradient flow.

This multidirectional approach enhances model generaliza-
tion by simulating features under different viewing angles.

D. Sequential Pyramid Pooling in the Backbone

The range image processing divides the image into H se-
quences of length W along the horizontal dimension. Our
overlap backbone uses vertical convolutional filters to compress
these images into ¢ x 1 X w feature sequences, preserving criti-
cal yaw information along the width dimension. To handle object
distortions and noise interference in range images, we propose
a simplified Spatial Pyramid Pooling (SPP) module inspired
by [19].

While traditional SPP operates on 2D feature maps to cap-
ture multi-scale information through pooling at different grid
resolutions, our SPP design employs two convolutional layers
along the horizontal dimension to compress input or expand
intermediate states, performing three consecutive max-pooling
operations followed by channel compression. The pooling oper-
ations apply sequentially rather than in parallel branches, with
each operation building upon the previous output, effectively
enhancing position invariance while mitigating noise-induced
feature loss.

E. Improved Triplet Loss With Hard Mining

Our ImTrihard Loss builds upon the conventional overlap-
based supervision triplet loss [5], [8]. However, it exhibits lim-
itations in capturing subtle feature distinctions. This limitation
primarily stems from the non-uniform distribution of training
samples, where random sampling leads to easily distinguishable
sample pairs that provide limited learning signals. To address
this issue, we propose a modified triplet loss that emphasizes
the most discriminative samples.

For a given query descriptor g,, we compute the distances
to all positive samples {g,} and all negative samples {g,, }
in the batch. Unlike standard triplet loss that averages these
distances, ImTrihard Loss focuses on the hardest positive sample

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 8, AUGUST 2025

(maximum distance to query) and the hardest negative sample
(minimum distance to query):

L1 (9,199} +{9n}) = Ad (94, 9p)

by (o max (@) )

— ko min (d (94, 9n)) (13)
where o denotes the margin, A denotes a compression coeffi-
cient, d(-) computes the squared Euclidean distance, and %, and
k,, are normalization factors based on the number of positive
and negative samples respectively.

We strictly follow the sample selection strategy as [3], con-
structing training triplets. During training, scan pairs with over-
lap scores above 0.3 are designated as positive samples, while
those below this threshold are negative samples. The additional
term Ad(gq, gp) ensures consistent feature learning by maintain-
ing an absolute distance constraint between query and positive
samples.

IV. EXPERIMENTS

A. Experimental Setup

We evaluate our method on KITTTI [20], Ford Campus [21],
and NCLT [22] datasets. KITTI provides urban, rural, and high-
way scenes with varying numbers of vehicles and pedestrians.
Ford Campus dataset is collected from an autonomous vehicle
platform with multiple loop closures. NCLT contains indoor and
outdoor campus trajectories across different times and seasons.
We using every LiDAR frame, adopting the same RV projection
strategy and parameters setting as [3], [8]. For the NCLT dataset,
we select sequence 2012-01-08 for training and constructing
database, while the sequences 2012-02-05 is used for querying.
For the KITTI Ford Campus datasets, we use the same training
and evaluation strategy as [3] to ensure the fairness of the
comparison experiments.

We employ AUC, Flmax, Recall@1, and Recall@1% met-
rics for consistency with prior research. These metrics have
inherent limitations as the overlap threshold selection directly
influences true/false positive classifications and consequently
affects Flmax scores. Furthermore, these standard metrics may
favor methods optimized for moderate viewpoint changes while
inadequately evaluating performance in extreme rotation sce-
narios.

For OverlapMamba implementation, we employ a single layer
with embedding dimension d,,,,qe; = 256. The processed and
unprocessed sequences are summed one-to-one for random yaw
augmentation. The SPP module uses a pooling kernel size of 5
with appropriate padding. We configure the NetVLAD module
following [3]. This configuration leverages NetVLAD’s inherent
permutation invariance property, which ensures that reordering
input features, corresponding to yaw rotations in LiDAR scans,
does not affect the final descriptor, thereby achieving robust yaw
invariance. Training uses Adam optimizer with initial learning
rate 5 x 107¢ for 20 epochs, using only LiDAR point cloud
data without fine-tuning. For comparative analysis, some results
are referenced from OverlapTransformer, and to ensure fair
comparison, we maintain identical experimental configurations.
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TABLE I
COMPARISON OF LOOP CLOSURE DETECTION PERFORMANCE IN KITTI AND
FORD CAMPUS DATASET

Dataset Approach AUC  Flmax Re@ci‘“ lébelcz;:l
Scan Context [23] 0.836 0.835 0.820 0.869
PointNetVLAD [24] 0.856 0.846 0.776 0.845
OverlapNet [5] 0.867 0.865 0.816 0.908

KITTI OverlapTransformer [3]  0.907 0.877 0.906 0.964
MinkLoc3D [17] 0.894  0.869 0.876 0.920
CVTNet [8] 0911 0.880 - -
BEVPlace [15] 0.908 0.875 0.889 0.953
OverlapMamba(Ours)  0.934 0.890 0.898 0.959
Scan Context [23] 0.903 0.842 0.878 0.958
PointNetVLAD [24] 0.872 0.830 0.862 0.938

Ford OverlapNet [5] 0.854 0.843 0.857 0.932

Campus OverlapTransformer [3]  0.923 0.856 0.914 0.954
MinkLoc3D [17] 0.871 0.851 0.878 0.942
OvelapMamba(Ours) 0.929 0.871 0.909 0.957

Following OverlapTransformer [3], we trained on KITTI
sequences 03~ 10 and evaluated on sequences 00 and 02. Loop
closures were determined using an overlap threshold of 0.3, with
a maximum of 6 positive and negative samples each.

B. Evaluation for Loop Closure Detection

The experimental results validate the effectiveness of our
approach in large-scale outdoor LiDAR-based localization and
loop closure detection, demonstrating strong generalization
across different environments. The quantitative evaluation re-
sults are presented in Table I. OverlapMamba, utilizing only
depth range images, achieves an AUC of 0.934 and Flmax of
0.890 on the KITTT dataset. Compared to CVTNet with its dual
RV and BEV inputs, our single-branch method demonstrates
enhanced performance with a 2.3% improvement in Flmax,
while also outperforming BEVPlace (which uses only BEV
input) with improvements of 2.6% in AUC and 1.5% in Flmax.
Furthermore, our approach surpasses the current state-of-the-
art OverlapTransformer by 1.3% in Flmax, while achieving
competitive recall@1 of 0.898 and recall@1% of 0.959. The
slightly lower recall metrics compared to OverlapTransformer
(underlined in the table) suggest that while our method excels at
overall place recognition accuracy, it occasionally ranks the sin-
gle most similar place with slightly less precision. This trade-off
likely stems from our focus on optimizing the global descrip-
tor’s discriminative power across varying viewpoints rather than
maximizing single-candidate ranking precision.

To verify cross-dataset generalization, we evaluate the model
trained on KITTI sequences 03-10 directly on the Ford dataset.
OverlapMamba achieves an Flmax of 0.871, exceeding the
previous best results from OverlapTransformer by 2.1%.

The performance improvements across experiments likely
stem from the SSM architecture’s efficiency in modeling
long-range dependencies in range images and our bidirectional
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along the vertical dimension and processed by a convolution layer to obtain the
output.
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Fig. 5. Place recognition results using the NCLT dataset session 2012-02-05
as the query and 2012-01-08 as the database.

strategy with SHIFT operations that enhances yaw invariance.
These architectural innovations, rather than dataset-specific op-
timizations, explain our consistent performance gains across
diverse environments.

While we evaluate place recognition and loop closure de-
tection in isolation, OverlapMamba’s lightweight architecture
enables seamless integration with complete SLAM systems
without significant computational overhead. Our global descrip-
tors directly interface with standard pose graph optimization
frameworks to correct accumulated drift.

C. Evaluation for Place Recognition

The experimental results on the NCLT dataset further validate
our method’s effectiveness in place recognition tasks. Following
the protocol established in OverlapTransformer [3], we train
our model using the database from 2012-01-08 and evaluate on
query sequences from 2012-02-05.

As shown in Fig. 6, OverlapMamba demonstrates superior
performance with only RV input, improving AR@1 by 1.30%
and AR@20 by 4.13% compared to CVTNet [8], which uti-
lizes both RV and BEV inputs, and consistently outperforming
BEVPIlace across all N values on both NCLT sessions despite
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Fig. 6. Comparison of two loss functions. (a) shows the change in the loss
value and (b) shows the evaluation on the sequence 00 of the KITTI dataset.

146.8°

¥

Yaw Difference:r
Scan D ] 159.1°

Fig. 7. LiDAR scan pairs showing the same locations from dramatically
different viewing angles. Top row: Scan A (purple) and Scan B (green) of the
same location with a yaw difference of 146.8°. Bottom row: Scan C (purple)
and Scan D (green) from another location with an even larger yaw difference
of 159.1°. Right column shows the overlapped scans with coordinate axes
indicating viewing directions. OverlapMamba successfully identifies these as
matching locations despite the extreme perspective differences.

its specialized BEV representation. Our model achieves the
highest AR@1 and AR @20 scores across all baselines including
methods using single BEV input and combined RV-BEV rep-
resentations, demonstrating that our architecture can effectively
capture spatial-temporal dependencies even with a simpler input
representation. This validates the effectiveness of our approach
in challenging place recognition scenarios where viewpoint and
environmental conditions vary significantly.

OverlapMamba excels in challenging scenarios with extreme
viewpoint variations. As shown in Fig. 7, our method success-
fully identifies matching locations despite yaw differences ex-
ceeding 140°. This viewpoint-invariant capability derives from
our bidirectional sequence modeling with SHIFT operations, en-
abling robust place recognition regardless of observation angle.

D. Ablation Study on Mamba Modules

We conduct comprehensive ablation studies to validate the
effectiveness of each proposed component in OverlapMamba,
with results shown in Table II. Using OverlapTransformer as
baseline, Mamba-based descriptor processing achieves superior
performance with linear complexity (setting ¢). Each additional
component further enhances the system performance (setting
11), while their combinations (setting ¢¢) validate the necessity
of each module.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 8, AUGUST 2025

TABLE II
ABLATION EXPERIMENTS WITH PROPOSED MODULES ON KITTI DATASET

Methods Component AUC  Flmax

Shift  SPP  ImTrihard Loss
Baseline 0.891 0.842
OverlapMamba (i) - - - 0.898 0.843
v - - 0.901 0.848
OverlapMamba (i7) - v - 0.882 0.845
- - v 0.881 0.850
v v - 0.930  0.872
.. v - v 0.913 0.858
OverlapMamba (iii) 3 v v 0926 0857
v v v 0.934  0.890

TABLE III

COMPARISON OF DIFFERENT NUMBERS OF OVERLAPMAMBA
BLOCKS ON THE KITTI DATASET

Number Runtime(ms) AUC  Flmax

1 5.1 0.934 0.890

2 7.8 0.848 0.803

3 10.4 0.822 0.782
TABLE IV

COMPARISON OF CONVERGENCE SPEED IN THE TRAINING PROCESS OF
OVERLAPMAMBA ON TwO LOSS FUNCTIONS

Trilet loss (original) ImTrihard loss

Epoch  Loss Flmax Loss Flmax
1 1.231 0.776 1.925 0.872
5 0.803 0.826 1.431 0.880
10 0.667 0.844 1.003 0.888
20 0.571 0.832 0.557 0.890

Further analysis on model depth, as shown in Table III, which
reports the metrics and module inference time including forward
pass and post-processing, reveals that a single OverlapMamba
module achieves optimal results with an AUC of 0.934 and
Flmax of 0.890, while deeper architectures increase runtime
from 5.1 ms to 10.4 ms without performance gains. This find-
ing suggests that for RV sequences, a single layer effectively
captures spatial relationships. The SHIFT operation enhances
the model’s ability to handle viewpoint variations by simulating
different yaw angles, which complements the SSM’s sequential
modeling capabilities. Unlike transformers where depth helps
establish global context, SSMs can model long-range depen-
dencies even with a single layer, while additional layers appear
to disrupt the delicate balance between feature discrimination
and generalization for place recognition tasks.

E. Study on ImTrihard Loss

We validate the effectiveness of our proposed ImTrihard loss
function through experiments on the KITTI dataset, with results
shown in Table IV and Fig. 6. The ImTrihard loss demonstrates
remarkable convergence speed, achieving an Flmax score of
0.872 in the first epoch. As illustrated in Fig. 6(b), the accuracy
on KITTI sequence 00 reaches 96.43% after just one epoch.
While the traditional triplet loss shows signs of overfitting with
a1.2% decrease in F1max from epoch 10 to epoch 20, ImTrihard
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TABLE V
COMPARISON OF RUNTIME WITH STATE-OF-THE-ART METHODS

Descriptor . .
Approach Extraction [ms] Searching [ms]
Hand Scan Context [23] 57.95 492.63
crafted
PointNetVLAD [24] 13.87 1.43
Learnin OverlapNet [5] 4.85 3233.30
bacog . MinkLoc3D [17] 15.94 8.10
) OverlapTransformer [3] 1.37 0.44
Ours 0.49 0.35

loss maintains stable performance throughout training. Fig. 6(a)
visualizes the loss convergence patterns, where ImTrihard loss,
despite initially higher values due to hard sample selection, ex-
hibits consistent and stable optimization. These results validate
that ImTrihard loss not only accelerates training convergence
but also enhances model generalization.

Furthermore, training experiments reveal OverlapMamba’s
excellent stability with no gradient instability, showing con-
sistent convergence regardless of initialization strategy. This
stability stems from the natural alignment between SSM and
the circular structure of range views.

F. Runtime

We evaluate the inference efficiency of our method using
the same configuration as [3]. As shown in Table V, Overlap-
Mamba achieves superior efficiency among all methods. This
performance advantage in searching time may stems from the
efficient SSM scan and the generation of descriptive descriptors
by the Mamba architecture, which demonstrates significantly
faster inference compared to similarly sized transformers or
MinkLoc3D [17].

V. CONCLUSION

In this paper, we propose a LPR network integrating Mamba
module into the architecture. Extensive experiments prove that
OverlapMamba outperforms other SoTA algorithms on three
public datasets in accuracy, complexity and speed with simple
information inputs. The integration of SSMs advances LiDAR-
based place recognition with potential applications in semantic
scene understanding and multi-modal perception. Despite strong
performance, like other single-modality approaches, our method
may face challenges in environments where depth information
alone is insufficient compared to multi-modal methods.
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