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Self-Supervised Diffusion-Based Scene Flow
Estimation and Motion Segmentation With 4D Radar
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Abstract—Scene flow estimation (SFE) and motion segmenta-
tion (MOS) using 4D radar are emerging yet challenging tasks in
robotics and autonomous driving applications. Existing LiDAR-
or RGB-D-based point cloud processing methods often deliver
suboptimal performance on radar data due to radar signals’ highly
sparse, noisy, and artifact-prone nature. Furthermore, for radar-
based SFE and MOS, the lack of annotated datasets further aggra-
vates these challenges. To address these issues, we propose a novel
self-supervised framework that exploits denoising diffusion models
to effectively handle radar noise inputs and predict point-wise scene
flow and motion status simultaneously. To extract key features
from the raw input, we design a transformer-based feature encoder
tailored to address the sparsity of 4D radar data. Additionally,
we generate self-supervised segmentation signals by exploiting
the discrepancy between robust rigid ego-motion estimates and
scene flow predictions, thereby eliminating the need for manual
annotations. Experimental evaluations on the View-of-Delft (VoD)
dataset and TJ4DRadSet demonstrate that our method achieves
state-of-the-art performance for both radar-based SFE and MOS.

Index Terms—Autonomous driving, 4D radar perception,
motion segmentation, scene flow estimation.

I. INTRODUCTION

4 D Millimeter-Wave (mmWave) radar [1], [2], [3], [4], [5],
[6] captures both 3D positions and radial relative velocities

(RRVs) of measurement points in a scene, providing additional
observation information, especially on dynamic objects. More-
over, radar sensors exhibit greater robustness under adverse
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Fig. 1. RadarSFEMOS combines scene flow estimation and motion segmen-
tation from sparse radar point cloud which takes two frames of 4D radar point
cloud as input and outputs the both results.

weather conditions compared to camera and LiDAR sensors,
making them highly valuable for robots and autonomous ve-
hicles operating in real-world environments. In light of these
advantages, several studies have initiated exploration in radar-
based applications [1], including semantic segmentation [2], 3D
occupancy prediction [3], and object tracking [4].

Scene flow estimation (SFE) and motion segmentation (MOS)
are critical and challenging tasks in 4D radar perception. Au-
tonomous vehicles or robots exist in ego-motion, leading to
complex motion patterns. The actual motion of the radar points is
a combination of ego-motion and object motion. SFE describes
a set of displacement vectors between two consecutive obser-
vations of a 3D scene, offering essential dynamic information,
while MOS focus on determining the true motion state of each
point in the world coordinate system. Both tasks are fundamental
for achieving a comprehensive understanding of the dynamic
scenes with multiple moving objects at varying speeds and direc-
tions. Although recent LiDAR- and image-based approaches [7],
[8], [9] have demonstrated promising performance, directly
applying these methods to radar data results in significant per-
formance degeneration [10]. This degradation is partially due to
the inherent sparsity of radar data and noise introduced by multi-
path interference and specular reflections [11]. Furthermore, the
high cost of labeling uneven radar data limits the scalability of
supervised learning methods. Existing approaches [9], [12], [13]
often rely on accurate ego-motion estimates from odometry or
SLAM systems. However, such estimates may become unreli-
able when both the robot and surrounding objects are in motion,
further complicating radar-based SFE and MOS tasks.

As shown in Fig. 1, we tackle the challenges of SFE and
MOS simultaneously in sparse and noisy 4D radar point cloud
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by proposing novel solutions to mitigate noise and sparsity
while ensuring robust performance and accurate point corre-
spondences. To this end, we design a self-supervised framework,
named RadarSFEMOS. It predicts point-wise scene flow and
motion status simultaneously, eschewing the need for additional
dependencies, such as manual annotations and odometric in-
puts. Initially, to extract key features from noisy radar point
cloud, we incorporate diffusion models [14] into our network,
leveraging its exceptional denoising capabilities. While point
correspondences in LiDAR point clouds are often clearly dis-
cernible, radar points at long distances are not only sparse
but also exhibit greater discrepancies in inter-point distances
compared to closer points [10]. To address this, we employ a
point-voxel correlation feature construction method to capture
both short-range and long-range correspondences, effectively
extracting features from all-pairs fields. Moreover, common
feature encoders designed for LiDAR point clouds often struggle
to perform effectively on highly sparse radar data. We design
a Transformer-Based feature encoder composed of three self-
attention layers, process the point cloud with the original reso-
lution throughout the encoder to keep as much information as
possible and enrich the points with high-level features. Finally,
the SFE head produces the point-wise scene flow results. Based
on that, RadarSFEMOS explicitly computes motion residuals by
comparing scene flow estimations with rigid ego-motion, subse-
quently feeding this residual into a motion head for point-wise
motion state prediction.

In summary, we make the following four key claims:
� We propose RadarSFEMOS, a novel self-supervised

framework that simultaneously addresses radar-based
scene flow estimation (SFE) and motion segmentation
(MOS) trained by three task-specific losses, without rely-
ing on additional dependencies such as manual annotations
or odometric information.

� We incorporate the diffusion model into our network and
leverage its denoising capabilities to achieve more robust
scene flow estimation, effectively addressing the noisy
characteristics of 4D radar data.

� We design a novel Transformer-based 4D point cloud
feature encoder that adeptly extracts key features for Point-
Voxel correlation volume construction to enable effective
point-level feature aggregation.

� Our proposed method achieves state-of-the-art (SOTA)
performance for both the SFE and MOS tasks on the VoD
dataset and TJ4DRadSet dataset.

II. RELATED WORK

A. Scene Flow Estimation on Point Cloud

Most existing scene flow estimation methods are based on
supervised learning and focus on LiDAR data. FlowNet3D [15]
first proposes directly extracting point features from point cloud
for scene flow estimation. Inspired by classical pyramid ap-
proaches, PointPWC-Net [16] estimates scene flow by con-
structing a cost volume at each feature pyramid level and re-
fining it. FLOT [17] introduces optimal transport to establish
correspondences between two point clouds. FlowStep3D [18]
and PV-RAFT [19] utilize Gated Recurrent Units (GRU) to
enhance prediction accuracy. Recently, Bi-PointFlowNet [20]
introduces novel bidirectional layers for improved flow em-
bedding. Some self-supervised SFE methods for point clouds
have been designed mainly for dense LiDAR, with performance
degrading significantly on radar data. SLIM [21] achieves the

self-supervised SFE and MOS using only thresholds for distin-
guishing moving points. Similarly, Rigid3DSF [13] introduces
instance-level rigidity in weakly supervised relying on object-
level abstraction. RigidFlow [22] introduces local rigidity priors
in self-supervised learning based on the assumption that a scene
consists of several rigidly moving components.

B. Motion Segmentation on Point Cloud

Motion segmentation (MOS) is also called moving object
segmentation. Many existing LiDAR-based methods rely on
multi-frame temporal inputs and odometry information, convert
the 3D raw point cloud into a 2D image plane, such as range im-
ages [23], [24], [25] or Bird’s Eye View (BEV) images [21], [26]
to facilitate online LiDAR point cloud processing. Chen et al.
[24] first exploit the residual range images for online MOS. Their
proposed method gets rid of the restraint of the pre-built maps
and can be directly applied in a SLAM pipeline. 4DMOS [12]
employs computationally efficient 4D convolutions to simul-
taneously extract spatial and temporal features, enabling the
prediction of moving object confidence scores for all points in
the sequence. Building on the concept of 4DMOS, Kreutz et al.
[27] propose a self-supervised learning framework that lever-
ages a 4D LiDAR representation to identify moving objects.
However, their method is constrained to environments with sta-
tionary backgrounds. InsMOS [28] not only predicts point-wise
motion labels but also detects instance-level information for
key traffic participants. Different from existing methods, our
RadarSFEMOS doesn’t need explicit odometry input, making
our method more robust when the odometry is not reliable.

C. 4D Radar Scene Flow and Segmentation

Due to the ability to operate in all weather conditions
and the robust performance in challenging environments, 4D
mmWave radar is essential for autonomous driving applications.
RaFlow [10] is the first work to estimate scene flow on 4D radar
which proposes three novel losses to address the challenges
posed by complex and intractable radar data. Ding et al. [29]
employ multiple cross-modal constraints for effective model
training, successfully integrating 4D radar into modern au-
tonomous driving architectures. In the MOS task, Radar radial
velocity only reflects the relative radial velocity, while MOS
aims to determine the true motion state of each point in the world
coordinate system, which is especially challenging in scenarios
with multiple moving objects at varying speeds and directions.
RadarMOSEVE [6] introduces a novel transformer network
for motion segmentation, yet its training necessitates manual
annotation. Radar Velocity Transformer [30] performs single-
scan MOS by incorporating the valuable velocity information
throughout each module of the network. Gaussian Radar Trans-
former [2] includes the newly introduced Gaussian transformer
layer to accurately perform sparse, single-scan segmentation.
Zeller et al. [31] enhance radar scans with temporal information
to tackle the challenge of moving instance segmentation. Unlike
previous methods, our proposed RadarSFEMOS simultaneously
addresses radar-based SFE and MOS tasks without requiring any
additional annotations, greatly enhancing its practical utility.

III. OUR APPROACH

A. Pipeline Overview and Problem Definition

As shown in Fig. 2, given two consecutive radar point cloud
Pt−1 = {pi ∈ R3}Ni=1 and Pt = {qj ∈ R3}Mj=1 with N,MAuthorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 26,2025 at 08:20:11 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Overview of RadarSFEMOS. Two point clouds Pt−1 and Pt are input into the Transformer Encoder, generating feature for building correlation features.
The coarse scene flow from the iteration update block is fed into the diffusion model for refining the estimation. As the residuals contain valuable motion information,
we use a MOS head on residuals to obtain the MOS results M simultaneously for Pt.

points. pi, qj denote the 3D coordinates. RadarSFEMOS aims
to estimate the scene flow vector F = {f i ∈ R3}Ni=1 from Pt−1

to Pt and recognize the point’s motion state M, i.e., moving or
static in scan Pt−1. SFE and MOS are linked by the vehicle’s
rigid ego-motionf rigid, which also causes the scene flow of static
objects. By establishing this connection, the scene flow f can
be decomposed into two components:f = f rigid + fmove, where
fmove corresponds to the motion of the surrounding moving ob-
jects, such as running vehicles and walking pedestrians. Besides,
we denote the warped point of Pt−1 as P′

t−1 = {p′
i ∈ R3}Ni=1

where p′
i = pi + f i.

B. Coarse Scene Flow Estimation

1) Transformer-Based Feature Encoder: For highly sparse
radar data, common LiDAR-based transformer modules typi-
cally exhibit suboptimal performance in capturing key features.
To this end, we introduce a local neighbor aggregation strategy
into our encoder, which can not only capture key local features
even at relatively greater distances but also can optimize the
point embedding.

In raw data, each point in the radar point clouds Pt−1 and
Pt is described by a C-dimensional feature vector, which en-
compasses not only the 3D spatial coordinates but also inherent
features such as Radial Relative Velocity (RRV), Radar Cross
Section (RCS), and power measurements. Due to the sparse
nature, adjacent points in radar data may have relatively large
distances. To effectively capture local salient features, we first
design a neighbor embedding layer for extracting features from
raw data, which consists of two convolution layers and two
neighbor sampling and grouping layers. We employ a ball query
mechanism for neighbor sampling operation, which is capable
of acquiring relatively stable local features in regions with
varying densities, thereby circumventing the feature extraction
bias caused by differences in point cloud density. We denote
the features after neighbor aggregation as Femb ∈ RC ′

. Sub-
sequently, we employ a multi-attention layer to further refine
the point embeddings and concatenate the multi embeddings
to maintain multi-scale details. The specific operations can be
represented as:

F1 = Attention1(Femb), (1)

Fi = Attentioni(Fi−1), i = 2, 3, (2)

FPt
= Linear(F1 ⊕ F2 ⊕ F3), (3)

where Attentioni(·) represents the i-th self-attention layer and
Linear is the linear layer.

2) Iterative Flow Estimation: Consistent with prior re-
search [18], [19], [21], an iterative update scheme is adopted
for SFE derivation. Iterative flow estimation commences with
the null initialization f0 = 0. Each iteration utilizes current
estimation results and correlation features to establish precise
point correspondences, thus iteratively refining the estimation.

Initially, a comprehensive correlation volume is constructed
from pairwise feature similarities to derive correlation fea-
tures. Point-wise features FPt−1

and FPt
, produced by the

Transformer-based feature encoder, are employed to compute
a correlation map via matrix dot product: Ccorr = FPt−1

· FPt
.

The correlation volume Ccorr is built only once and is kept as
a lookup table for flow estimation in different steps. Thus point
pairs with similar features have high correlation values. Based
on this correlation map, point and voxel branches are employed
for correlation feature construction as follows:

Point branch: One frequently employed approach for iden-
tifying neighboring points in 3D point cloud is the utilization
of K-nearest neighbors (KNN) algorithm [15], [21]. Let Nk

denotes the top-k nearest neighbors ofP′
t−1 inPt, the correlation

feature between P′
t−1 and Pt can be defined by:

Cp(P′
t−1,Pt) = max

k
(MLP((CM (Nk)⊕ (Nk − P′

t−1))),

(4)
CM (Nk) contains corresponding correlation values of Ccorr.

Voxel branch: The voxel branch first builds a voxel neighbor
cube centered around P′

t−1, which is a cube with L = a× a×
a sub-cubes. The side length of each sub-cube is r and N (l)

r

is the set of the Pt−1 points that locate in the l−th sub-cube.
The correlation values of the points inside each sub-cube are
averaged to produce the sub-cube feature

e
(l)
cube =

1

nl

∑

N (l)
r

CM (N (i)
r ), (5)
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where nl is the set size of N (l)
r . The correlation feature from the

voxel branch between P′
t−1 and Pt can be expressed as:

Cv(P′
t−1,Pt) = MLP

(
e
(1)
cube ⊕ e

(2)
cube ⊕ . . .⊕ e

(L)
cube

)
. (6)

We adopt the GRU-based [32] structure which enables iterative
residual flow generation, thereby enhancing the accuracy of
flow estimation. As a simplified variant of LSTM with fewer
control gates, GRU can capture the long-term dependents of
the context and produce better outputs than traditional RNNs,
which are essential for the iterative scene flow update module.
Furthermore, a content feature encoder, structurally similar to
the transformer-based encoder but with independent weights, is
implemented to extract context features from Pt−1. These con-
text features provide auxiliary information for GRU iterations.
This enables the GRU to effectively incorporate current flow
estimates and context features, iteratively refining the hidden
state and enhancing flow estimation precision.

The iterative flow estimation begins with the initialize state
f̂0 = 0. In the (s+ 1)-th iteration, the estimation result is up-
dated upon the current state,

f̂s+1 = f̂s + δ, (7)

zs = σ(Conv1d([hs−1, xs],Wz)), (8)

rs = σ(Conv1d([hs−1, xs],Wr)), (9)

ĥs = tanh(Conv1d([rs � hs−1, xs],Wh)), (10)

hs = (1− zs)� hs−1 + zs � ĥs, (11)

where Wz , Wr, and Wh are the weight matrices that can be
learned during training. xs is a concatenation of correlation
fields, current flow f̂s and context features. � is the Hadamard
product, [·, ·] is a concatenation andσ(·) is the sigmoid activation
function. Finally, the obtained hidden state hs is fed into a small
convolution layers to generate the iteration result δ. Eventually,
the sequence converges to the final prediction.

C. Diffusion-Based Scene Flow Refinement

Even though we have obtained SFE results, the inherent radar
noise may still affect the estimation accuracy. Inspired by the
denoising capabilities of diffusion models, we integrate it into
the network to effectively mitigate the noise, thus facilitating
more accurate scene flow estimation.

1) Pseudo Ground Truth Generation: Diffusion model needs
to add Gaussian noise to the ground truth and learn to recover
the scene flow from pure noise. However, point-wise scene
flow labeling is challenging. Built upon recent pseudo-label
generation techniques [22], [33], we employ a piecewise rigid
pseudo-label generation module. This module estimates flow for
each rigid region by determining optimal rigid transformations,
yielding comprehensive scene flow pseudo-labels.

Decomposing the point cloud into K rigid regions
{G(1),G(2), . . .,G(K)}, the piecewise rigid transform from
Pt−1 to Pt for the region G(K) can be considered as an in-
dependent rigid body registration from G(K) to Pt:

[R∗
k, t

∗
k] = arg min

[Rk,tk]
‖(Rk ·G(k) + tk − Pt)‖22. (12)

With [R∗
k, t

∗
k], the pseudo rigid scene flow estimate F (k) for this

region can be computed by:

F (k) = R∗
kG

(k) + t∗k −G(k). (13)

Combining the pseudo rigid SFE for all rigid regions, we obtain
the final pseudo SFE labels for self-supervised training.

2) Forward Noising Process: Direct scene flow recovery
from pure noise is difficult due to data distribution variations. We
model the scene flow residual, defined as the difference between
coarse scene flow and pseudo ground truth, as a diffusion latent
variable. During training, a forward diffusion process progres-
sively introduces Gaussian noise into the flow residual across T
timesteps via a Markov chain:

q(di1:T |di0) = ΠT
t=1q

(
dit|dit−1

)
, (14)

where di0 indicates the flow residual for i-th point in Pt and dit
is the intermediate flow residual at timestamp t.

3) Reverse Denoising Process: To generate the flow residual
with robustness to outliers, we resort to the reverse process of
diffusion model. Basically, the reverse process can be repre-
sented as a parameterized Markov chain starting from a random
noise p(siT ):

pθ(d
i
0:T ) = p(diT )Π

T
t=1pθ(d

i
t−1|dit), (15)

where the reverse transition kernel pθ(dit−1|dit) is approximated
with a neural network. We follow [8] to directly learn the flow
residual d̂i0 by the denoising network Hθ(s

i
t−1|sit, t).

D. Scene Flow-Guided Motion Segmentation

SFE and MOS capture complementary aspects of physical
motion characteristics [34], where scene flow quantifies the
magnitude of motion, while segmentation identifies the motion
status. RRV measurements describe the moving speed of am-
bient objects relative to the sensor in the radial direction. The
product of RRV measurement and time interval Δt can be seen
as an approximation of the radial projection of the truth flow
vector.

This insight is crucial to MOS because it can generate instruc-
tive signals for motion segmentation. Assuming the velocity of
pi keeps constant during time interval Δt between two scans,
we can reach the following equation:

vriΔt = f�
gt,i ·

pi
||pi|| 2

, (16)

where f gt,i is the true scene flow vector.
For radar or LiDAR, the majority of points in a scene are static,

as the background typically has a more extensive structure com-
pared to movable foreground instances. We intuitively assume
that all points are stationary and then utilize the Kabsch algo-
rithm [35] to get an intermediate transformation Tr ∈ SE(3).
WithTr, an intermediate rigid scene flow f rigid can be computed
accordingly. We utilize the radial projection of rigid flows f rigid
and the difference in measured RRV timesΔt as residual feature:

f residual,i =

∣∣∣∣f�
rigid,i ·

pi
||pi|| 2

− vriΔt

∣∣∣∣ . (17)

Given the residual feature for each point in the point cloud Pt,
we use an MLP consisting of three linear layers and two ReLU
nonlinear layers to convert these features into the final logits for
MOS.
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E. Loss Function and Network Training

Since the accuracy of SFE significantly affects the MOS per-
formance, our RadarSFEMOS employs a two-stage training pro-
cess to expedite network convergence. Firstly, Lflow supervises
the network to achieve precise SFE estimation. Subsequently,
the SFE estimation module’s parameters are frozen, and only the
motion segmentation module is trained using Lmos supervision.
Lflow consists of two parts: Pseudo ground truth loss Lpg,

Doppler loss Ldop. The overall loss function can be written as:

Lflow = Lpg + Ldop. (18)

Using the generated pseudo labels for supervision, we can
achieve the self-supervised training of SFE networks with su-
pervised loss functions:

Lpg =

N∑
i=1

‖f est,i − f pseudo‖1. (19)

Despite some inevitable measurement errors, we empirically
found that RRV renders strong supervision signals for training
scene flow estimators. Formally, we formulate a radial displace-
ment loss based on (16):

Ldop =
∑
pi∈Pt

∣∣∣∣f�
i

pi
||pi||2 − vriΔt

∣∣∣∣ . (20)

The motion classification loss Lmos are optimized using a self-
supervised loss that is based on the nearest neighbor (NN) errors
ei. Given a point-wise flow f i and a nearest neighbor function
as follows:

NNPt
(p′

i) = arg min
pj∈Pt

|pj − p′
i|. (21)

For every flow-corrected point, the NN-based error distance is:

ei = |NNPt
(p′

i)− p′
i|. (22)

These errors are computed not only for the raw flow prediction
F , but also for its rigid counterpart Frigid, allowing for a com-
parison between the raw flow errors ei and those of the rigid
flow, denoted as er,i. To train the model, we apply the standard
binary cross-entropy loss defined as follows:

Lmos = −
∑
pi∈Pt

[ei < er,i] log σ(mcls,i)

+ [ei ≥ er,i] log(1− σ(mcls,i)). (23)

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Datasets: For our experiments, we use the View-of-Delft
(VoD) dataset [39] and TJ4DRadSet [40]. VoD provides syn-
chronized and calibrated data captured by co-located sensors,
including a 64-beam LiDAR, an RGB camera, RTK-GPS/IMU
based odometer and a 4D radar sensor. TJ4DRadSet dataset
was collected across various driving scenarios, consisting of 44
consecutive sequences, all of which are thoroughly annotated
with 3D bounding boxes and track IDs. We follow [29] to divide
new splits from the official sets.

Ground truth labelling: We annotate ground truth scene flow
by using object annotations (i.e., bounding boxes and track IDs)

and ground truth radar ego-motion (calculated from the RTK-
GPS/IMU based odometer). For points belonging to the static
background, we label their flow vectors with the ground truth
radar ego-motion. For foreground objects, we track the ID of
each annotated bounding box across consecutive point clouds
and compute their rigid transformation w.r.t the radar coordinate
frame.

Training Details: We train SFE model for 30 epochs and
MOS model for 50 epochs using the Adam optimizer [41].
The initial learning rate is set as 0.001 and decays by a factor
of 0.9 after each epoch. Data augmentation is implemented
by randomly rotating and translating each point cloud from
the training set. During the pseudo-label generation phase, the
source point cloud is decomposed into 16 supervoxels and treat
these supervoxels as rigid moving regions. Our code is developed
based on PyTorch [42].

B. SFE Performance Evaluation

Prior LiDAR-based SFE [15], [16], [17], [18], [21], [22]
commonly use EPE, Acc Strict, Acc Relax as the major metric
for evaluation. EPE = ‖f est,i − f gt,i‖2, is the end point error
averaged on each point in meters. Acc Strict (ACCS) is the
percentage of points whose EPE<0.05 m or relative error< 5%.
Acc Relax (ACCR) is the percentage of points whose EPE <
0.1 m or relative error < 10%.

Directly applying EPE to radar point cloud lacks sensor-
specific consideration, as 4D radars have lower resolution than
LiDAR. Following [10], we adopt a Resolution-normalized EPE
(RNE) to align our evaluation with LiDAR-based scene flow
estimation. Two RNE-based accuracy metrics are: SAS: the
percentage of points whose RNE < 0.1 m or relative error
< 10%, and RAS: the percentage of points whose EPE < 0.2 m
or relative error < 20%.

Additionally, we present results separately for static and mov-
ing points and compute their average to address class imbalance.
For notation, 50-50 RNE refers to the average of Static RNE
(SRNE) and Moving RNE (MRNE).

We quantitatively compare the performance of RadarS-
FEMOS to baselines on both VoD [39] and TJ4DRadSet [40]
datasets, as shown in Tables I and II. Compared with non-
learning, self-supervised, fully supervised and cross-modal su-
pervision counterparts, RadarSFEMOS outperforms all self-
supervised methods and even surpasses some fully and cross-
modal supervised approaches in certain metrics. The Resolution-
normalized EPE for SFE by our method is 0.074 m, with high
accuracy in RAS exceeding 90%. We also present separate
evaluation results for static and moving points. The qualitative
results of SFE are shown in Fig. 3. As observed, our method
demonstrates more accurate SFE in 4D radar data owing to our
Diffusion-based network design.

C. MOS Performance Evaluation

For the MOS task, we evaluate our method against both self-
supervised [10], [21] and fully supervised [6] approaches using
the mean intersection-over-union (mIoU) and the accuracy of
the moving objects (ACCM), which is defined as follows:

IoU =
TP

TP + FP + FN
, ACCM =

TP + TN
TP + TN + FP + FN

(24)
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TABLE I
SFE PERFORMANCE COMPARISON WITH OTHER BASELINE METHODS ON THE VOD DATASET

TABLE II
SFE PERFORMANCE COMPARISON WITH OTHER BASELINE METHODS ON THE TJ4DRADSET DATASET

Fig. 3. Qualitative results of SFE. The pink points denote the points of Pt. The green points represent the warped points of Pt−1 by SFE result F . Ideally, if the
SFE is accurate, the green points should align well with the pink points.
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Fig. 4. Visualization of MOS compared with SLIM [21] and RaFlow [10]. Moving and static points of Pt−1 are rendered as red and blue.

TABLE III
MOS PERFORMANCE COMPARISON

TABLE V
ABLATION STUDIES OF DIFFERENT REFINEMENT ON VOD DATASET

where TP, FP, and FN represent true positive, false positive and
false negative predictions of moving points. We compare our
RadarSFEMOS with multiple MOS baseline methods, includ-
ing selfsupervised RaFlow [10] and SLIM [21] and supervised
RadarMOSEVE [6]. To ensure fair comparisons, we adopted a
consistent setup that uses two radar scans and excludes odometry
information. As shown in Table III, our method significantly
outperforms all self-supervised baseline methods across all
evaluated metrics. Particularly in mIoU, our method achieves
55.179% and surpasses the SOTA method by 9.4%. Fig. 4
shows the qualitative results on the test set of different methods.
Compared to other methods, our approach demonstrates superior
capabilities in MOS and illustrates the effectiveness of our
framework in simultaneously addressing radar-based SFE and
MOS tasks.

D. Ablation Study

We conducted ablation studies on the VoD validation set
to better understand the effectiveness of our design choices,
shown in Tables IV and V. We compare three setups. The
first setup shows the results of several common LiDAR-based

TABLE VI
RUNTIME BREAKDOWN BY NETWORK MODULE

TABLE IV
ABLATION STUDIES OF COMPONENTS ON THE VOD DATASET

point features encoder on radar data including ours. The second
setup compares different correlation feature construction meth-
ods used in FlowNet3D [15], PointPWC-Net [16], FLOT [17],
Difflow3D [8]. In both setups, we switch off the Diffusion-Based
Scene Flow Refinement to show that the result differences stem
from the designed modules.

Study on Diffusion Model: To evaluate the effectiveness of
the diffusion model on 4D radar-based SFE task, we also report
the performance after removing the diffusion model, while
retaining the iterative estimator. Without the Diffusion-Based
Scene Flow Refinement module, the quality of the SFE results
is notably lower. However, by incorporating diffusion model
into our method, we can further enhance SFE by leveraging the
denoising capability of diffusion model. As in Table V, there is
a 0.014 RNE decrease and 5.9% RAS increase. We also compare
the Refinement module used in [19], which is composed of three
convolutional layers and one fully connected layer. These results
indicate the diffusion model’s efficacy in reducing radar noise,
yielding enhanced SFE accuracy and robustness.

E. Runtime

We measure the runtime performance of our network us-
ing our Python implementation with a single NVIDIA RTX
3090 GPU. Our method achieves an average inference time of
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143.8 ms for simultaneous SFE and MOS. A runtime breakdown
by network modules, shown in Table VI, is provided for further
understanding of our method’s runtime performance.

V. CONCLUSION

In this letter, we propose a novel self-supervised joint frame-
work for radar-based SFE and MOS without any additional
reliance, greatly enhancing its robustness and practical utility.
To address the inherent high sparsity and noise in radar raw data,
we first design a novel transformer-based feature encoder with
neighbor aggregation strategy, which effectively captures local
salient features even at relatively greater distances. Furthermore,
we incorporate the diffusion model into our framework to ad-
dress the challenges of noise inherent in 4D radar, improving
the SFE performance significantly. Extensive experiments on
the VoD and TJ4DRadSet datasets demonstrate the superiority
of our framework.
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