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ARTICLE INFO ABSTRACT

Communicated by L. Zhu Road crack detection is essential for intelligent infrastructure maintenance in smart cities. To reduce reliance
on costly pixel-level annotations, we propose WP-CrackNet, an end-to-end weakly-supervised method that trains
with only image-level labels for pixel-wise crack detection. WP-CrackNet integrates three components: a classifier

ng;"ljg}rr‘-tssﬁpervised generating class activation maps (CAMs), a reconstructor measuring feature inferability, and a detector producing
Road cracks pixel-wise road crack detection results. During training, the classifier and reconstructor alternate in adversarial
Deep learning learning to encourage crack CAMs to cover complete crack regions, while the detector learns from pseudo labels
Computer vision derived from post-processed crack CAMs. This mutual feedback among the three components improves learning

stability and detection accuracy. To further boost detection performance, we design a path-aware attention mod-
ule (PAAM) that fuses high-level semantics from the classifier with low-level structural cues from the reconstructor
by modeling spatial and channel-wise dependencies. Additionally, a center-enhanced CAM consistency module
(CECCM) is proposed to refine crack CAMs using center Gaussian weighting and consistency constraints, en-
abling better pseudo-label generation. We create three image-level datasets and extensive experiments show that
WP-CrackNet achieves comparable results to supervised methods and outperforms existing weakly-supervised
methods, significantly advancing scalable road inspection. The source code package and datasets are available at
https://mias.group/WP-CrackNet/.

1. Introduction systems capable of efficiently and objectively analyzing road condi-
tions [6]. As shown in Fig. 1, collection devices—such as car cameras,
smartphones, and surveillance cameras—offer a promising solution by
continuously collecting road surface images and uploading the data to
cloud-based platforms for automated road crack detection [7]. The de-
tection results can provide actionable insights for infrastructure admin-
istrators, thereby facilitating more timely and data-driven maintenance
decisions.

Recent advancements in deep learning, particularly Convolutional
Neural Networks (CNNs) and Transformer-based networks, have signifi-
cantly enhanced automated road crack detection, which are generally
categorized into three types: (1) image classification networks that
distinguish between crack and non-crack images [8-11]; (2) object

Road cracks, typically appearing as narrow lines or curves on road
surfaces, serve as early indicators of structural deterioration in civil in-
frastructure. Although subtle, road cracks can progressively compromise
the integrity of roadways and pose significant safety hazards. For in-
stance, in 2020, deteriorated road conditions contributed to 12.6 % of
traffic accidents in the UK [1]. Therefore, regular inspection and timely
maintenance are crucial to reducing risks and extending the service life
of networks [2,3]. At present, manual visual inspection remains the pri-
mary approach for crack detection [4], but it is costly, labor-intensive,
time-consuming, and highly subjective—especially for extensive high-
way networks exceeding 100,000 km in countries like China and the
US [5]. These limitations underscore the urgent need for automated

* Corresponding author.
Email addresses: 2111481 @tongji.edu.cn (N. Ma), 2151094@tongji.edu.cn (Z. Song), 2252974@tongji.edu.cn (Q. Hu), tangxy@scnu.edu.cn (X. Tang),
cxzhang@jiangnan.edu.cn (C. Zhang), rui.fan@ieee.org (R. Fan), elhxie@ntu.edu.sg (L. Xie).

https://doi.org/10.1016/j.neucom.2025.131845
Received 29 August 2025; Received in revised form 10 October 2025; Accepted 15 October 2025

Available online 16 October 2025
0925-2312/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


http://www.sciencedirect.com/science/journal/0925-2312
https://www.elsevier.com/locate/NEUCOM
https://orcid.org/0000-0003-2593-6596
https://mias.group/WP-CrackNet/
mailto:2111481@tongji.edu.cn
mailto:2151094@tongji.edu.cn
mailto:2252974@tongji.edu.cn
mailto:tangxy@scnu.edu.cn
mailto:cxzhang@jiangnan.edu.cn
mailto:rui.fan@ieee.org
mailto:elhxie@ntu.edu.sg
https://doi.org/10.1016/j.neucom.2025.131845
https://doi.org/10.1016/j.neucom.2025.131845

N. Ma, Z. Song, Q. Hu et al.

3

Administrator

I 1
Collection Devices 1

)

Surveillance
Cameras

Car Cameras

[
|
|
|
i
|
| Smartphones
Fig. 1. Road inspection for intelligent infrastructure maintenance with the
proposed WP-CrackNet.

detection networks that identify cracks at the instance level (location
and class) [12-14]; and (3) semantic segmentation networks that pro-
vide pixel-level crack detection and have emerged as the dominant
approach in this field [15-19]. However, the training of supervised se-
mantic segmentation networks relies heavily on manually annotated
datasets, which are costly and time-consuming to construct. This re-
liance limits the scalability of road surface perception, as the massive
amounts of collected data are difficult to efficiently annotate at the
pixel level, thereby hindering the widespread deployment in large-scale
infrastructure maintenance.

To overcome this limitation, we propose a novel Weakly-supervised
Pixel-wise Crack Detection Network (WP-CrackNet) via adversarial mu-
tual learning. Unlike prior methods that rely on offline pseudo-label
generation [20-22] or hand-crafted cues [23], WP-CrackNet adopts
an end-to-end training strategy that jointly optimizes three synergistic
components—a classifier, a reconstructor, and a detector—using only
image-level labels. This design simplifies the training pipeline and pro-
motes a more stable learning process. The classifier generates CAMs to
localize discriminative regions, while the reconstructor measures the
inferability between road and crack features to enhance structural un-
derstanding and encourage crack CAMs to fully cover crack regions
(inspired by Ref. [22]). The detector then produces pixel-wise road crack
predictions based on pseudo labels derived from post-processed crack
CAMs. Through alternating adversarial training between the classifier
and reconstructor, whose outputs feed into the detector, WP-CrackNet
achieves stable and mutually reinforcing optimization. Furthermore, we
design the PAAM to effectively integrate high-level semantic informa-
tion with low-level structural cues from the classifier and reconstruc-
tor to improve detection performance. Additionally, we introduce the
CECCM to refine crack CAMs using center Gaussian weighting and con-
sistency constraints for better generation of pseudo labels. Experimental
evaluations on three crack datasets demonstrate that WP-CrackNet not
only achieves detection performance comparable to supervised meth-
ods but also surpasses SoTA general and road crack detection-specific
weakly-supervised methods. The main contributions can be summarized
as follows:

1. We propose WP-CrackNet, a novel end-to-end weakly-supervised
pixel-wise crack detection method trained using only image-level
labels.
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2. We utilize an adversarial mutual learning strategy for three
components which improves learning stability and road crack
detection performance.

3. We design a path-aware attention module to effectively integrate
semantic context and structural cues and a center-enhanced CAM
consistency module to refine crack CAMs for better generation of
pseudo labels.

4. We validate WP-CrackNet on three self-created datasets, showing
comparable performance to supervised methods and outperform-
ing other weakly-supervised methods.

The remainder of this paper is organized as follows: Section 2 reviews
related work. Section 3 details the proposed methodology. Section 4
presents implementation details, ablation studies, and comparative ex-
periments. Finally, Section 5 concludes the paper.

2. Related work
2.1. Deep learning-based road crack detection methods

Supervised methods based on CNNs and Transformers have been
extensively developed for road crack detection, employing architec-
tures such as FCN [24], SegNet [25], Deeplab [26], U-Net [15], etc.
Among them, Zou et al. [27] proposed Deepcrack, by fusing features
from different scales of SegNet [28] to obtain hierarchical details, sub-
sequently resulting in accurate pixel-wise road crack detection results.
Similarly, Yang et al. [29] proposed a feature pyramid-based hier-
archical boosting network (FPHBN), introducing a side network on
the HED network [30] to learn hierarchical feature information for
road crack detection. Another Deepcrack version [31] incorporated
a side-output layer into VGG-16 [32], adopting guided filtering and
conditional random field techniques to achieve improved road crack
detection performance. Tao et al. [33] proposed a novel convolutional-
transformer network to combine both local and global information
extracted from road crack images. In addition, a boundary awareness
module was designed to capture boundary details of road cracks to re-
fine crack detection results. Nevertheless, the methods mentioned above
are data-driven, and training them relies on massive pixel-level human-
annotated labels. The process of obtaining such fine labels is significantly
time-consuming and laborious. To reduce this burden, label-efficient
methods have been explored. Despite their potential, these methods
still face notable limitations. The unsupervised method in [34] strug-
gles to detect fine cracks due to their subtle visual characteristics.
The semi-supervised method in [35] remains sensitive to the quality
and quantity of labeled data, with performance degrading significantly
when labels are scarce. The weakly-supervised method in [23] relies on
manually crafted image processing techniques to generate pseudo la-
bels from CAMs offline, leading to unstable outcomes and suboptimal
performance.

2.2. Weakly-supervised semantic segmentation methods

Weakly-supervised semantic segmentation (WSSS) reduces reliance
on costly pixel-level annotations by using weaker supervision such as
scribbles [36], bounding boxes [37], and image-level labels [38-40].
Among these, image-level labels are favored for their simplicity and
scalability but provide only class presence without spatial information,
making precise localization difficult. To tackle this, researchers tend to
leverage CAMs [41] to highlight discriminative regions learned by clas-
sifiers and use refined CAMs as pseudo labels to train a segmentation
network. However, CAMs typically focus on the most distinctive parts,
failing to cover the entire target class region. To explicitly expand the
CAMs, methods adopting sub-category classification [38], cross-image
relationships [39], contrastive learning [42], attention modules [43,44]
and adversarial erasing mechanisms [20-22] have been proposed. For
instance, Kweon et al. [20] used a pre-trained classifier to erase discrim-
inative regions, enabling more precise CAM generation by encouraging
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Fig. 2. The overall architecture of WP-CrackNet, consisting of a classifier, a reconstructor, and a detector. During the training phase, the classifier generates CAMs to
localize discriminative regions, the reconstructor measures feature inferability, and the detector learns from pseudo labels derived from post-processed crack CAMs

to produce pixel-wise road crack detection results.

activation of less discriminative regions. However, the usage of fixed
classifier limits its performance. Yoon et al. [21] further introduced a
triplet learning framework that relaxes reliance on the fixed classifier,
enabling more flexible guidance of the erasing process and resulting in
more complete CAMs. Kweon et al. [22] formulated WSSS as adversarial
learning of the classifier and the reconstructor, using the reconstruction
task to obtain an effective regularization of CAM generation. Inspired
by the methods described above, we proposed WP-CrackNet for end-
to-end weakly-supervised road crack detection. Unlike these methods
relying on multi-stage processing, our method integrates feature extrac-
tion, crack localization, and segmentation into a unified network, further
unlocking the potential of mutual adversarial learning. Also, PAAM and
CECCM are designed to improve the quality of the generated crack CAMs
and enhance the detection performance. The extensive experimental
results demonstrate the superiority of WP-CrackNet over SoTA weakly-
supervised semantic segmentation methods on the task of road crack
detection.

3. Proposed methodology
3.1. Architecture overview

Let the road image training set be I% = {(IR, T®),...,(I% T®)} and
the crack image training set be I¢ = {(IS,T°),....IS.TS)}, where
TR = [1,0] denotes the non-crack class label and T¢ = [0, 1] denotes
the crack class label, respectively. Here, I f, I :: € REXWX3 denote the
i-th road and crack image with H and W as the height and width. The
overall architecture of WP-CrackNet is illustrated in Fig. 2, comprising
a classifier Cls, a reconstructor Rec, and a detector Det. The classi-
fier is trained via image-level supervision and generates crack CAMs
to highlight crack regions within the crack image. The reconstructor is
designed with an encoder-decoder architecture, aiming to assess the in-
ferability of crack versus non-crack regions by reconstructing the input
crack image. The detector is trained using pseudo labels derived from the
post-processed crack CAMs to output refined pixel-wise crack detection
results.

During the training phase, multi-layer fused feature maps from the
encoder of reconstructor Rec.E are decomposed into crack and road fea-
tures based on crack CAMs, which are reconstructed separately. Inspired
by Ref. [22], when crack CAMs fully cover all crack regions, the in-
ferability between crack and road features becomes low. To leverage
this, an adversarial scheme trains Rec to reconstruct one feature from

the other, while Cls learns to generate crack CAMs that hinder this
reconstruction. Simultaneously, Der refines its predictions by combin-
ing high-level semantic information from C/s with low-level structural
cues from Rec, guided by the post-processed crack CAMs. This collab-
orative framework forms a reciprocal feedback loop among the three
modules, improving training stability and detection performance under
weak supervision.

3.2. Adversarial training of classifier and reconstructor

Given an input image I € {I R IC}, the classifier and reconstructor
output class predictions ¢ and ¢"™ indicating the presence of cracks,
along with CAMs M and M " that highlight discriminative regions. This
process is formulated as:

M, q=Cls(I), M, q"° = Rec.E(I). 1
In line with [45], ResNet38 [46] is employed as the backbone network
for both Cls and Rec.E, followed by a 1 x 1 convolution layer serving
as the classification head to generate CAMs. For input crack image I€,
multi-layer fused feature map Z is obtained by passing it through Rec.E,
and is decomposed into crack feature map Z - and road feature map Z
by using the corresponding crack CAM M :

Zo=ZOM,, Zr=Z0O0(U-My), 2)
where © denotes element-wise multiplication. Then, a switch training
strategy is adopted, where Cls and Rec.E are updated in turn. Z and
Z p are passed into the decoder of reconstructor Rec.D (using a UNet-
based network) to obtain corresponding reconstruction results:

Oc = Rec.D(Z:), Opg = Rec.D(Zy). 3

When Cls is frozen, Rec.E is trained to reconstruct one feature from the
other. Conversely, with Rec.E frozen, O and Oy are obtained, and Cls
is trained to generate M . that hinders the reconstruction of the original
image.

Furthermore, considering the potential activation drift or instability
in CAMs introduced by the adopted adversarial training scheme, along
with the inherently slender and low-contrast nature of cracks, we pro-
pose a center-enhanced CAM consistency module (CECCM) to better
guide the generation of M . This module enhances spatial alignment be-
tween Cls and Rec.E by applying Gaussian-based center weighting and
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Fig. 3. The proposed PAAM, consisting of a spatial attention branch and a
channel attention branch.

enforcing consistency between the center-enhanced crack CAMs. Given
an input crack image, M and M are obtained from CIs and Rec.E,
respectively. Then, a center-enhancement operation is applied to both
CAMs, guided by their spatial center of mass. Specifically, fora CAM M,
we compute its normalized spatial center as:

Yy X M(x,y) X,y MGy

s = 4
ToMey T Y MGy @

Hx =

Then, a spatial Gaussian prior G € R¥*" centered at (u,, u,) is
constructed:

= p) + = uy)
G(x,y) = exp <—% : ®)
20
where o controls the spread of the Gaussian. Then, the center-enhanced

CAMs are obtained via element-wise multiplication:

Mcg=Mc0Ge, ME,=ME oG (6)
Finally, we impose a consistency loss between the two center-enhanced
CAMs to encourage Cls and Rec.E to produce spatially aligned and
structure-consistent activations.

3.3. Iterative training of detector

Given an input crack image I, we empirically select the output fea-
ture map from an intermediate residual block in both CIs and Rec.E
as the input to Det. This layer leverages dilated convolutions to ex-
tract abundant semantic representations while maintaining a relatively
high spatial resolution. The obtained feature maps are denoted as Z ,.Cn”
and Z ffl“, which provide high-level semantic information and low-level
structural cues for the training of Det.

To effectively fuse these features, we concatenate them as Z g,"" and
feed the result into a novel attention mechanism named Path-Aware
Attention Module (PAAM), which enhances the discriminative capabil-
ity of the fused representation, especially by adaptively emphasizing
crack-relevant regions through modeling both spatial and channel-wise
dependencies. The structure of PAAM is illustrated in Fig. 3, consisting of
a spatial attention branch and a channel attention branch. To capture the
directional characteristics of cracks, we apply directional convolutions
D,(-) along four orientations 6 € {0°,45°,90°,135°}. For each direction,
we compute the absolute response:

Ry = 1Dp(Z{™), )]

and the spatial attention map A,,,;, is obtained by aggregating the
directional responses followed by a sigmoid activation &:

Agpatial = S(Rgo + Raso + Rogo + Ry3s0). ®

spatial —

The spatial attention map serves as a soft mask that highlights potential
crack paths across the feature map. We perform path-weighted fusion by
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applying this attention to the input feature via element-wise multiplica-
tion, followed by a convolution block with 1 x 1 kernel size to reduce
computational cost and refine the fused features:

Z7 = ReLU(BN (W1, (Z5”" © Aqparia)- 9)

Then, Z;” atial is fed into the channel attention branch, which models
inter-channel dependencies by emphasizing informative feature chan-
nels to better capture complementary cues such as texture, edges,
and context for crack detection. Following the squeeze-and-excitation
paradigm, we apply a global context aggregation using adaptive average
pooling to obtain a channel-wise descriptor:

s = AvgPool(Z""'") € ROIX1, (10

The descriptor is then reshaped into a vector and passed through two
fully connected layers, interleaved with ReLU and sigmoid activations,
to generate the channel attention map:

A hannet = S(Fc(ReLU (Fc(s p1411en))))- (11D

Finally, the reshaped channel attention map is element-wise multiplied
with Z7*'“ to produce Z, which serves as the input to Der (composed
of a series of convolution and transposed convolution layers).

To enable the network to learn the mapping from input crack im-
age to pixel-wise road crack detection results Y ,,,, we train Det using
the pseudo label Y, which is obtained by post-processing the corre-
sponding crack CAM with dense Conditional Random Fields (denseCRF)
[47]. The denseCRF algorithm refines the coarse CAM by modeling
long-range dependencies between pixels based on both spatial proximity
and color similarity. It encourages pixels with similar appearances and
close spatial distances to be assigned the same label, which is particu-
larly effective for road crack detection where cracks are often thin and
low-contrast.

Since the quality of crack CAMs evolves during training, the pseudo
labels are dynamically updated, making the learning process inherently
iterative. To further improve training robustness, we introduce a selec-
tion mechanism that filters out pseudo labels that are entirely empty
(i.e., all-black masks), thereby avoiding supervision from uninformative
samples and enhancing the quality of the learning process.

3.4. Loss function

For the training of WP-CrackNet, the total loss function is defined as
follows:

Lipar = Lprec + Lcis + Lpers (12)

where Lg,., Lcys, and Lp,, denote the training losses for Rec, Cls and
Det. During training, L,. and L, are alternately optimized with the
other module frozen, and the parameters of Det are consistently updated
with L, to guide precise road crack detection.

3.4.1. Reconstructor loss

Given an input image I, we first use the standard binary cross-
entropy (BCE) loss between the class prediction ¢ and image-level
ground-truth label T € {T®,TC)} to facilitate the learning of classifi-
cation ability, denoted as:

L =—[Tlogsg™)+ (1 - T)log(l — 8(g")] . (13)

As mentioned above, we train Rec to reconstruct one feature from the
other. To ensure consistency, we minimize the difference between the
reconstructed result and the input crack image within the opposite
class region. Specifically, for crack and road features, we minimize the
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Ablation study results for pixel-wise crack detection performance to investigate the impact of integrating outputs of C/s and Rec.E, and to
validate the effectiveness of the proposed CECCM and PAAM on the DeepCrack dataset [31]. The symbol indicates the used module for the

training of the detection branch.

Cls Det Rec.E CECCM PAAM Precision (%)1 Recall (%)1 Accuracy (%)1 F1-Score (%)1 ToU (%)t
v v 90.111 68.308 98.305 77.709 63.545
v v v 83.920 74.032 98.263 78.666 64.835
v v v v 83.828 78.341 98.409 80.992 68.055
v v v v v 82.868 80.682 98.443 81.760 69.148

Fig. 4. Ablation study results illustrating crack CAMs (b, d, f) obtained under dif-
ferent training strategies—classifier only, adversarial training, and adversarial
training with CECCM—and their corresponding pseudo labels (c, e, g) produced
via denseCRF, with (a) showing the input image.

following losses:

E)iconl = |(1 _MgC)O(IC_OC)h’ (14)
Eicanl = |MrC?CO(IC _OR)ll’ (15)
where | - |; represents L1 loss. Therefore, the final reconstructor loss is

formulated as follows:

C pC
ERec = iclﬁclsl + )“rl['

reconl

R ;R
+ Arl[:reconl ’ (16)
where 4, /lrcl ,and Aﬁ are weighting parameters used to harmonize these
— € pC RpR

losses, and we have L, = 4 L +ANLS .
3.4.2. Classifier loss

Given an input image I, similarly, the BCE loss is employed to
facilitate the learning of classification ability for Cls:
L =—[Tlogé(g) + (1 —T)log(l - 6(g))] . 17)
For input crack images, the objective of CIs is to generate crack CAMs
that hinder Rec from reconstructing the original image. To this end, we
minimize the similarity between the reconstruction results and the input
image on crack region, with a similar constraint also applied to the road
region:
L ="10-M)odc-00)l, (18)

recon

ck __|Mc®(IC—dR)|1- 19)

recon2 —

Furthermore, a consistency loss between center-enhanced crack CAMs
from Cls and Rec is designed to enforce spatial alignment and enhance

the focus on central crack regions, thereby facilitating more accurate
and robust crack localization, which is denoted as:

1 rec
Leee = 1w ZlMCG_Mcgl- (20)
Therefore, the final classifier loss is formulated as follows:

+ AR R

2 recon2

Loy = ALy +ASLS

r2 recon2

+ j’cecﬁCEC’ (21)

where 4,,, /lrcz, Ag, and 4., are weighting parameters used to harmonize

these losses. We have £ —ACLC )RR

recon2 = 12 recon2 r2£recorl2'

3.4.3. Detector loss

Given input crack image I, as illustrated in 3.3, we can obtain road
crack detection results Y ,,, by passing through CIs, Rec, and Det. The
detector is trained using the corresponding pseudo label Y ., and the
detector loss is denoted as:

pses

Lo == X Ve 0850 ) + (1= Y log (1-6(Y,,) |- 22)

4. Experimental results
4.1. Datasets

The Crack500 [29] dataset consists of 500 high-resolution road im-
ages (2000 x 1500 pixels) with pixel-level annotations. Each image is
divided into 16 non-overlapping regions, and those with over 1000 crack
pixels are retained, yielding 1896 training, 348 validation, and 1124 test
images. This dataset includes four crack types and poses challenges such
as shadows, occlusions, and varying lighting. For our experiments, su-
pervised methods are trained on the original dataset with all images
resized to 256 X256 pixels for consistency. Additionally, we create a new
training set by combining 756 undamaged road images cropped from the
original dataset with 1896 crack images, and assign image-level labels to
facilitate the training of weakly-supervised methods.

The DeepCrack [31] dataset consists of 537 pixel-level annotated
images of cracks on concrete and asphalt surfaces across various scenes
and scales. Each image is captured at a resolution of 544 x 384 pixels and
split into 300 training and 237 test images. Similarly, we train supervised
methods on the original dataset with the size of 256 x 256 pixels and
create a new training set for weakly-supervised methods by combining
296 undamaged road images (cropped and rescaled from the original
dataset) with 300 crack images, all labeled at the image level.

The CFD [48] dataset consists of 118 high-quality images of concrete
surfaces with cracks ranging from 1 mm to 3 mm in width, each anno-
tated at the pixel level with a resolution of 480 x 320 pixels. The dataset
features diverse illumination conditions, increasing the difficulty of ac-
curate crack detection. For experiments, 70 images are used for training
and 48 for testing, all resized to 256 x 256 for the training of supervised
methods. To support weakly-supervised methods and account for the
subtle nature of cracks in this dataset, we enlarge each image in the
training set and divide it into a 3 x 3 grid of patches. This results in
a new training set consisting of 268 crack images and 256 undamaged
images, all annotated with image-level labels.
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Quantitative experimental results of pixel-wise crack detection performance on the Crack500 dataset [29].

Training strategy Methods Precision (%)t Recall (%)t Accuracy (%)1 F1-Score (%)1 ToU (%)1
Specific supervised Deepcrack19 [31] 57.581 86.733 95.687 69.213 52.920
Deepcrack18 [27] 70.919 70.356 96.731 70.636 54.603
Crack-Att [49] 66.497 70.883 96.376 68.620 52.230
HrSegNet [50] 67.652 74.092 96.572 70.726 54.710
CT-crackseg [33] 62.158 72.126 96.472 66.772 50.119
Weakly-supervised AEFT [21] 68.406 26.986 95.222 38.703 23.995
OC-CSE [20] 62.014 26.897 94.993 37.520 23.092
VWL [51] 85.821 4.019 94.598 7.6782 3.992
ACR [22] 6.580 75.302 38.859 12.103 6.441
WS-SCS [23] 72.904 38.411 95.759 50.314 33.613
WP-CrackNet 71.812 55.579 96.298 62.661 45.625
Unsupervised UP-CrackNet [34] 65.377 58.609 95.484 61.808 44.726
Table 3
Quantitative experimental results of pixel-wise crack detection performance on the DeepCrack dataset [31].
Training strategy Methods Precision (%)t Recall (%)1 Accuracy (%)1 F1-Score (%)1 ToU (%)1
Specific supervised Deepcrack19 [31] 88.785 68.923 97.756 77.603 63.403
Deepcrack18 [27] 71.720 88.403 98.350 79.192 65.552
Crack-Att [49] 89.967 69.327 98.339 78.310 64.352
HrSegNet [50] 82.492 80.337 98.412 81.400 68.634
CT-crackseg [33] 85.381 78.838 98.501 81.979 69.461
Weakly-supervised AEFT [21] 81.899 68.112 97.969 74.372 59.199
OC-CSE [20] 89.786 66.131 98.209 76.164 61.504
VWL [51] 86.356 56.650 97.738 68.418 51.996
ACR [22] 88.339 66.424 98.168 75.829 61.069
WS-SCS [23] 98.499 30.722 96.952 46.836 30.579
WP-CrackNet 82.868 80.682 98.443 81.760 69.148
Unsupervised UP-CrackNet [34] 63.412 88.852 98.049 74.006 58.738
Table 4
Quantitative experimental results of pixel-wise crack detection performance on the CFD dataset [48].
Training strategy Methods Precision (%)t Recall (%)t Accuracy (%)1 F1-Score (%)1 IoU (%)1
Specific supervised Deepcrack19 [31] 20.892 88.142 94.372 33.778 20.321
Deepcrack18 [27] 46.231 69.159 98.188 55.417 38.329
Crack-Att [49] 70.086 43.530 98.778 53.705 36.710
HrSegNet [50] 29.782 43.474 98.322 35.348 21.469
CT-crackseg [33] 60.907 54.916 98.692 57.757 40.604
Weakly-supervised AEFT [21] 93.233 4.008 98.432 7.685 3.996
OC-CSE [20] 81.154 6.397 98.452 11.860 6.304
VWL [51] 94.161 3.746 98.429 7.206 3.738
ACR [22] 80.268 4.217 98.423 8.013 4.174
WS-SCS [23] 77.764 2.485 98.400 4.816 2.468
WP-CrackNet 62.262 49.682 98.690 55.265 38.184
Unsupervised UP-CrackNet [34] 10.978 63.785 90.987 18.731 10.333

4.2. Implementation details

All experiments are conducted on a single NVIDIA RTX 4090 GPU,
with each model trained for 200 epochs. The initial learning rate is set to
0.001 and adjusted dynamically using the polynomial decay policy. To
enhance generalization, standard data augmentation techniques such as
random cropping, resizing, and horizontal flipping are applied to the
input images. Following the empirical settings suggested in [22], we
configure the loss weights as follows: for Lg,., we set 4., = 1 and
26 = a8 = 05; for L, we use A, = 1, A5 = 08, A8 = 0.3, and
Jowe = 0.5.

During inference on the CFD dataset, each image is divided into a
3 x 3 grid of patches, which are resized and classified by CiIs to fil-
ter out background regions. Only patches predicted to contain cracks
are passed to the detection module, and final result is obtained by
merging the outputs from these selected patches. For fair compari-
son, all weakly-supervised methods for comparison are processed using
denseCRF refinement following CAM generation. Additionally, they are

trained using the same Rec and Det architecture as our method. For eval-
uation, we adopt a comprehensive set of metrics, including precision,
recall, accuracy, IoU, and F1-score, to quantitatively assess the detec-
tion performance of WP-CrackNet against existing methods. In addition,
model parameters and frames per second (FPS) are used to evaluate the
model complexity and processing speed.

4.3. Ablation study

To assess the impact of integrating both high-level semantic in-
formation and low-level structural cues from Cls and Rec.E, and to
evaluate the effectiveness of the proposed CECCM and PAAM, we con-
duct an ablation study on the DeepCrack dataset [31]. The quantitative
experimental results are presented in Table 1. The first row shows crack
detection results using only Cls and Det, while the last row represents
the process of obtaining fused feature map through C/s and Det, which
is then enhanced by PAAM, with crack CAMs further improved by the
CECCM for better generation of pseudo labels. The experimental results
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Fig. 5. Examples of experimental results on the (I) CFD [48], (II) DeepCrack [31], and (III) Crack500 [29] datasets: (a) Input images; (b) Ground Truth; (c) Deepcrack19
[311; (d) Deepcrack18 [27]; (e) Crack-Att [49]; (f) HrSegNet [50]; (g) CT-crackseg [33]; (h) AEFT [21]; (i) OC-CSE [20]; (j) ACR [22]; (k) WS-SCS [23]; (1) UP-CrackNet

[34]; (m) WP-CrackNet.

that integrate all these modules attain the best detection performance,
demonstrating the effectiveness of the proposed CECCM and PAAM.

In addition, qualitative experiments are conducted to visually vali-
date the effectiveness of the adopted adversarial training strategy and
the proposed CECCM. The results in Fig. 4 indicate that the adversarial
training strategy enables crack CAMs to fully cover crack regions, while

the proposed CECCM enhances the generation and spatial aggregation
of crack CAMs. Furthermore, with the aid of denseCRF, high-quality
pseudo labels can be derived for the training of pixel-wise road crack
detection. In Fig. 4, (a) is the input image; (b), (d), and (f) are crack
CAMs obtained under different training settings (classifier only, adver-
sarial training, and adversarial training with CECCM, respectively); and
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(c), (e), and (g) are their corresponding pseudo labels after applying
denseCRF.

4.4. Comparison with SOTA methods

To validate the effectiveness of our proposed WP-CrackNet, we
conduct a comprehensive comparison against four SoTA general weakly-
supervised semantic methods, five supervised methods, one weakly-
supervised method, and one unsupervised method specifically designed
for road crack detection. The evaluation is performed on the Crack500
[29], Deepcrack [31], and CFD [48] datasets. Quantitative and qual-
itative results are presented in Tables 2-4 and Fig. 5, respectively.
The results clearly indicate that WP-CrackNet achieves detection perfor-
mance comparable to road crack detection-specific supervised methods
while utilizing only image-level labels, outperforming other weakly-
supervised methods as well as the unsupervised method.

Specifically, across the three datasets, our proposed WP-CrackNet
demonstrates an improvement in IoU of 12.012 % — —41.633 %, 7.644 % —
—38.569 %, and 31.880 %——35.716 % compared to other SoTA general and
road crack detection-specific weakly-supervised methods. These results
stem from WP-CrackNet’s online and iterative pseudo-label generation
with a selection mechanism, which reduces noise and enhances label
reliability, as well as the incorporation of CECCM and PAAM. CECCM
enables more precise crack CAMs, while PAAM effectively fuses high-
level semantics from the classifier with low-level structural cues from
the reconstructor by modeling spatial and channel-wise dependencies.
Furthermore, compared with the road crack detection-specific method
WS-SCS, WP-CrackNet reduces reliance on hand-crafted cues and adopts
an end-to-end joint optimization strategy, leading to greater adaptability
and robustness.

When compared to five supervised methods tailored for road crack
detection, WP-CrackNet exhibits only a marginal IoU drop of 0.313 %
and 2.420 % compared to CT-crackSeg [33] and outperforms other su-
pervised methods on the DeepCrack and CFD datasets. On the Crack500
dataset, it experiences an IoU decrease of 4.494 %-9.085 % relative
to these supervised methods. The relatively lower performance on the
Crack500 dataset can be attributed primarily to two factors: (1) Higher
scene variability and diverse crack morphologies: Crack500 contains
four crack types with variations in widths, lengths, and branching
patterns, captured on different road materials under diverse condi-
tions. Real-world challenges such as shadows, occlusions, and lighting
variations, together with complex background textures, increase intra-
class variability and make crack boundary localization more difficult
when only image-level labels are available; (2) More pixel-level labels
for supervised methods: Crack500 contains a larger number of finely
annotated pixel-level labels than the other datasets, allowing super-
vised networks to learn precise geometric priors and handle small or
partially occluded cracks more effectively. In contrast, WP-CrackNet
relies on implicit localization through image-level cues, which lim-
its its boundary accuracy in these cases. Nevertheless, considering the
substantial reliance of supervised techniques on extensive pixel-level
manual annotations, our proposed WP-CrackNet, which achieves com-
parable detection results using only image-level labels, offers significant
potential to enhance the scalability of road defect detection.

Furthermore, in comparison to the unsupervised method UP-
CrackNet [34], WP-CrackNet achieves improvements in IoU by 0.899 %,
10.410 %, and 27.851 % on the Crack500, DeepCrack, and CFD datasets,
respectively. The results align with the intuitive expectation that lever-
aging image-level label information generally leads to better detection
performance than methods that do not utilize any label information.
Notably, for datasets such as CFD, where cracks are thin and not ob-
vious, our proposed WP-CrackNet exhibits superior accuracy in crack
boundary prediction while effectively suppressing noise in the detection
results.

Table 5 reports model parameters and processing efficiency of WP-
CrackNet and representative supervised road crack detection methods

Neurocomputing 659 (2026) 131845

Table 5
Quantitative experimental results in terms of model parameters and processing
efficiency.

Methods Model parameters (M)] FPS (on RTX3090)1
Deepcrack18 [27] 30.905 59.175
Deepcrack19 [31] 14.720 287.888

SCCDNet [52] 31.705 143.585

Crack-Att [49] 45.804 64.710

HrSegNet [50] 9.641 285.635

CDLN [53] 19.151 67.984
LECSFormer [54] 16.528 96.881
CT-crackseg [33] 22.882 36.890
WP-CrackNet 86.458 73.613

on an NVIDIA RTX3090 using 256 x 256 inputs. For WP-CrackNet, in
the inference phase, only the trained Rec.E, Cls, Det, and the PAAM
are required for processing the test data. Experimental results show that
WP-CrackNet has a slightly larger number of parameters compared with
these supervised methods, and its FPS ranks at a moderate level. The
relatively larger parameter size of WP-CrackNet is mainly attributed
to the multi-module collaborative training strategy designed to achieve
weakly supervised road crack detection. Considering that WP-CrackNet
requires only image-level annotations while delivering detection perfor-
mance comparable to supervised methods, it remains highly practical.
In future iterations, techniques such as model pruning and knowledge
distillation will be employed to compress the parameter size, along with
hardware-friendly designs, to make the model suitable for deployment
on edge devices (such as drones) for real-time road crack detection
tasks.

5. Conclusion

In this paper, we propose WP-CrackNet, an innovative end-to-end
weakly-supervised road crack detection method that leverages image-
level labels to reduce reliance on costly pixel-level annotations, greatly
enhancing the scalability of road inspection. WP-CrackNet consists of
three components: a classifier that creates CAMs, a reconstructor that
assesses the inferability between road and crack features, and a detec-
tor that outputs pixel-wise road crack detection results. The classifier
and reconstructor are trained adversarially in turns, while the detector
is trained with pseudo labels derived from post-processed crack CAMs.
Our designed PAAM effectively fuses high-level semantics from the clas-
sifier and low-level structural cues from the reconstructor by modeling
spatial and channel-wise dependencies, improving the detection perfor-
mance. Additionally, the proposed CECCM improves the quality of crack
CAMs through center Gaussian weighting and consistency constraints,
optimizing pseudo-label generation. Extensive experiments conducted
on three datasets demonstrate the effectiveness of WP-CrackNet and its
superiority over SoTA general and road crack detection-specific weakly-
supervised methods in detecting road cracks by only using image-level
labels.

Future work will focus on compressing and accelerating WP-
CrackNet through model pruning and knowledge distillation, enabling
not only cloud-based detection but also real-time deployment on edge
devices. Additionally, we plan to incorporate a small amount of fine-
grained pixel-level annotations for joint training, aiming to further
improve detection performance and enhance domain adaptation capa-
bilities.
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