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A B S T R A C T

Road crack detection is essential for intelligent infrastructure maintenance in smart cities. To reduce reliance 

on costly pixel-level annotations, we propose WP-CrackNet, an end-to-end weakly-supervised method that trains 

with only image-level labels for pixel-wise crack detection. WP-CrackNet integrates three components: a classifier 

generating class activation maps (CAMs), a reconstructor measuring feature inferability, and a detector producing 

pixel-wise road crack detection results. During training, the classifier and reconstructor alternate in adversarial 

learning to encourage crack CAMs to cover complete crack regions, while the detector learns from pseudo labels 

derived from post-processed crack CAMs. This mutual feedback among the three components improves learning 

stability and detection accuracy. To further boost detection performance, we design a path-aware attention mod-

ule (PAAM) that fuses high-level semantics from the classifier with low-level structural cues from the reconstructor 

by modeling spatial and channel-wise dependencies. Additionally, a center-enhanced CAM consistency module 

(CECCM) is proposed to refine crack CAMs using center Gaussian weighting and consistency constraints, en-

abling better pseudo-label generation. We create three image-level datasets and extensive experiments show that 

WP-CrackNet achieves comparable results to supervised methods and outperforms existing weakly-supervised 

methods, significantly advancing scalable road inspection. The source code package and datasets are available at 

https://mias.group/WP-CrackNet/.

1. Introduction

Road cracks, typically appearing as narrow lines or curves on road 

surfaces, serve as early indicators of structural deterioration in civil in-

frastructure. Although subtle, road cracks can progressively compromise 

the integrity of roadways and pose significant safety hazards. For in-

stance, in 2020, deteriorated road conditions contributed to 12.6 % of 

traffic accidents in the UK [1]. Therefore, regular inspection and timely 

maintenance are crucial to reducing risks and extending the service life 

of networks [2,3]. At present, manual visual inspection remains the pri-

mary approach for crack detection [4], but it is costly, labor-intensive, 

time-consuming, and highly subjective—especially for extensive high-

way networks exceeding 100, 000 km in countries like China and the 

US [5]. These limitations underscore the urgent need for automated

systems capable of efficiently and objectively analyzing road condi-

tions [6]. As shown in Fig. 1, collection devices—such as car cameras, 

smartphones, and surveillance cameras—offer a promising solution by 

continuously collecting road surface images and uploading the data to 

cloud-based platforms for automated road crack detection [7]. The de-

tection results can provide actionable insights for infrastructure admin-

istrators, thereby facilitating more timely and data-driven maintenance 

decisions.

Recent advancements in deep learning, particularly Convolutional 

Neural Networks (CNNs) and Transformer-based networks, have signifi-

cantly enhanced automated road crack detection, which are generally 

categorized into three types: (1) image classification networks that 

distinguish between crack and non-crack images [8–11]; (2) object
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Fig. 1. Road inspection for intelligent infrastructure maintenance with the 

proposed WP-CrackNet.

detection networks that identify cracks at the instance level (location 

and class) [12–14]; and (3) semantic segmentation networks that pro-

vide pixel-level crack detection and have emerged as the dominant 

approach in this field [15–19]. However, the training of supervised se-

mantic segmentation networks relies heavily on manually annotated 

datasets, which are costly and time-consuming to construct. This re-

liance limits the scalability of road surface perception, as the massive 

amounts of collected data are difficult to efficiently annotate at the 

pixel level, thereby hindering the widespread deployment in large-scale 

infrastructure maintenance.

To overcome this limitation, we propose a novel Weakly-supervised 

Pixel-wise Crack Detection Network (WP-CrackNet) via adversarial mu-

tual learning. Unlike prior methods that rely on offline pseudo-label 

generation [20–22] or hand-crafted cues [23], WP-CrackNet adopts 

an end-to-end training strategy that jointly optimizes three synergistic 

components—a classifier, a reconstructor, and a detector—using only 

image-level labels. This design simplifies the training pipeline and pro-

motes a more stable learning process. The classifier generates CAMs to 

localize discriminative regions, while the reconstructor measures the 

inferability between road and crack features to enhance structural un-

derstanding and encourage crack CAMs to fully cover crack regions 

(inspired by Ref. [22]). The detector then produces pixel-wise road crack 

predictions based on pseudo labels derived from post-processed crack 

CAMs. Through alternating adversarial training between the classifier 

and reconstructor, whose outputs feed into the detector, WP-CrackNet 

achieves stable and mutually reinforcing optimization. Furthermore, we 

design the PAAM to effectively integrate high-level semantic informa-

tion with low-level structural cues from the classifier and reconstruc-

tor to improve detection performance. Additionally, we introduce the 

CECCM to refine crack CAMs using center Gaussian weighting and con-

sistency constraints for better generation of pseudo labels. Experimental 

evaluations on three crack datasets demonstrate that WP-CrackNet not 

only achieves detection performance comparable to supervised meth-

ods but also surpasses SoTA general and road crack detection-specific 

weakly-supervised methods. The main contributions can be summarized 

as follows:

1. We propose WP-CrackNet, a novel end-to-end weakly-supervised

pixel-wise crack detection method trained using only image-level 

labels.

2. We utilize an adversarial mutual learning strategy for three

components which improves learning stability and road crack 

detection performance.

3. We design a path-aware attention module to effectively integrate

semantic context and structural cues and a center-enhanced CAM 

consistency module to refine crack CAMs for better generation of 

pseudo labels.

4. We validate WP-CrackNet on three self-created datasets, showing

comparable performance to supervised methods and outperform-

ing other weakly-supervised methods.

The remainder of this paper is organized as follows: Section 2 reviews 

related work. Section 3 details the proposed methodology. Section 4 

presents implementation details, ablation studies, and comparative ex-

periments. Finally, Section 5 concludes the paper.

2. Related work 

2.1. Deep learning-based road crack detection methods

Supervised methods based on CNNs and Transformers have been 

extensively developed for road crack detection, employing architec-

tures such as FCN [24], SegNet [25], Deeplab [26], U-Net [15], etc. 

Among them, Zou et al. [27] proposed Deepcrack, by fusing features 

from different scales of SegNet [28] to obtain hierarchical details, sub-

sequently resulting in accurate pixel-wise road crack detection results. 

Similarly, Yang et al. [29] proposed a feature pyramid-based hier-

archical boosting network (FPHBN), introducing a side network on 

the HED network [30] to learn hierarchical feature information for 

road crack detection. Another Deepcrack version [31] incorporated 

a side-output layer into VGG-16 [32], adopting guided filtering and 

conditional random field techniques to achieve improved road crack 

detection performance. Tao et al. [33] proposed a novel convolutional-

transformer network to combine both local and global information 

extracted from road crack images. In addition, a boundary awareness 

module was designed to capture boundary details of road cracks to re-

fine crack detection results. Nevertheless, the methods mentioned above 

are data-driven, and training them relies on massive pixel-level human-

annotated labels. The process of obtaining such fine labels is significantly 

time-consuming and laborious. To reduce this burden, label-efficient 

methods have been explored. Despite their potential, these methods 

still face notable limitations. The unsupervised method in [34] strug-

gles to detect fine cracks due to their subtle visual characteristics. 

The semi-supervised method in [35] remains sensitive to the quality 

and quantity of labeled data, with performance degrading significantly 

when labels are scarce. The weakly-supervised method in [23] relies on 

manually crafted image processing techniques to generate pseudo la-

bels from CAMs offline, leading to unstable outcomes and suboptimal 

performance.

2.2. Weakly-supervised semantic segmentation methods

Weakly-supervised semantic segmentation (WSSS) reduces reliance 

on costly pixel-level annotations by using weaker supervision such as 

scribbles [36], bounding boxes [37], and image-level labels [38–40]. 

Among these, image-level labels are favored for their simplicity and 

scalability but provide only class presence without spatial information, 

making precise localization difficult. To tackle this, researchers tend to 

leverage CAMs [41] to highlight discriminative regions learned by clas-

sifiers and use refined CAMs as pseudo labels to train a segmentation 

network. However, CAMs typically focus on the most distinctive parts, 

failing to cover the entire target class region. To explicitly expand the 

CAMs, methods adopting sub-category classification [38], cross-image 

relationships [39], contrastive learning [42], attention modules [43,44] 

and adversarial erasing mechanisms [20–22] have been proposed. For 

instance, Kweon et al. [20] used a pre-trained classifier to erase discrim-

inative regions, enabling more precise CAM generation by encouraging
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Fig. 2. The overall architecture of WP-CrackNet, consisting of a classifier, a reconstructor, and a detector. During the training phase, the classifier generates CAMs to 

localize discriminative regions, the reconstructor measures feature inferability, and the detector learns from pseudo labels derived from post-processed crack CAMs 

to produce pixel-wise road crack detection results.

activation of less discriminative regions. However, the usage of fixed 

classifier limits its performance. Yoon et al. [21] further introduced a 

triplet learning framework that relaxes reliance on the fixed classifier, 

enabling more flexible guidance of the erasing process and resulting in 

more complete CAMs. Kweon et al. [22] formulated WSSS as adversarial 

learning of the classifier and the reconstructor, using the reconstruction 

task to obtain an effective regularization of CAM generation. Inspired 

by the methods described above, we proposed WP-CrackNet for end-

to-end weakly-supervised road crack detection. Unlike these methods 

relying on multi-stage processing, our method integrates feature extrac-

tion, crack localization, and segmentation into a unified network, further 

unlocking the potential of mutual adversarial learning. Also, PAAM and 

CECCM are designed to improve the quality of the generated crack CAMs 

and enhance the detection performance. The extensive experimental 

results demonstrate the superiority of WP-CrackNet over SoTA weakly-

supervised semantic segmentation methods on the task of road crack 

detection.

3. Proposed methodology 

3.1. Architecture overview

Let the road image training set be I 

𝑅 = {(𝑰𝑅
1 ,𝑻 

𝑅 ),… , (𝑰 

𝑅 , 𝑇  

 

𝑅)} and𝑛  

the crack image training set be I 

𝐶 = {(𝑰𝐶
1 ,𝑻 

𝐶 ),… , (𝑰 

𝐶 𝐶 )}, where𝑚 ,𝑻 𝑚  

𝑻 

𝑅 = [1, 0] denotes the  

 non-crack class label and 𝑻 

𝐶 = [0, 1] denotes 

the crack class label, respectively. Here, 𝑰 

𝑅 𝐶 × ×3, 𝑰  

 ∈𝑖  𝑖  R 

𝐻 𝑊  denote the

𝑖-th road and crack image with 𝐻 and 𝑊 as the height and width. The

overall architecture of WP-CrackNet is illustrated in Fig. 2, comprising 

a classifier 𝐶𝑙𝑠, a reconstructor 𝑅𝑒𝑐, and a detector 𝐷𝑒𝑡. The classi-

fier is trained via image-level supervision and generates crack CAMs 

to highlight crack regions within the crack image. The reconstructor is 

designed with an encoder–decoder architecture, aiming to assess the in-

ferability of crack versus non-crack regions by reconstructing the input 

crack image. The detector is trained using pseudo labels derived from the 

post-processed crack CAMs to output refined pixel-wise crack detection 

results.

During the training phase, multi-layer fused feature maps from the 

encoder of reconstructor 𝑅𝑒𝑐.𝐸 are decomposed into crack and road fea-

tures based on crack CAMs, which are reconstructed separately. Inspired 

by Ref. [22], when crack CAMs fully cover all crack regions, the in-

ferability between crack and road features becomes low. To leverage 

this, an adversarial scheme trains 𝑅𝑒𝑐 to reconstruct one feature from

the other, while 𝐶𝑙𝑠 learns to generate crack CAMs that hinder this 

reconstruction. Simultaneously, 𝐷𝑒𝑡 refines its predictions by combin-

ing high-level semantic information from 𝐶𝑙𝑠 with low-level structural 

cues from 𝑅𝑒𝑐, guided by the post-processed crack CAMs. This collab-

orative framework forms a reciprocal feedback loop among the three 

modules, improving training stability and detection performance under 

weak supervision.

3.2. Adversarial training of classifier and reconstructor

Given an input image 𝑰 ∈ {𝑰 

𝑅 , 𝑰 

𝐶 }, the classifier and reconstructor 

output class predictions 𝑞 and 𝑞 

𝑟𝑒𝑐 indicating the presence of cracks, 

along with CAMs 𝑴 and 𝑴 

𝑟𝑒𝑐 that highlight discriminative regions. This 

process is formulated as:

𝑴 , 𝑞 = 𝐶𝑙𝑠(𝑰), 𝑴 

𝑟𝑒𝑐 , 𝑞 

𝑟𝑒𝑐 = 𝑅𝑒𝑐.𝐸(𝑰). (1)

In line with [45], ResNet38 [46] is employed as the backbone network 

for both 𝐶𝑙𝑠 and 𝑅𝑒𝑐.𝐸, followed by a 1 × 1 convolution layer serving 

as 

𝐶the classification head to generate CAMs. For input crack image 𝑰 , 

multi-layer fused feature map 𝒁 is obtained by passing it through 𝑅𝑒𝑐.𝐸, 

and is decomposed into crack feature map 𝒁 and road feature map𝐶     

 

𝒁 𝑅 

by using the corresponding crack CAM 𝑴 𝐶 

:

𝒁 𝐶 

= 𝒁 ⊙ 𝑴 𝐶 

, 𝒁 𝑅 

= 𝒁 ⊙ (1 − 𝑴 𝐶 

), (2)

where ⊙ denotes element-wise multiplication. Then, a switch training 

strategy is adopted, where 𝐶𝑙𝑠 and 𝑅𝑒𝑐.𝐸 are updated in turn. 𝒁 𝐶 

and 

𝒁 are reconstructor𝑅  passed into the decoder of   

 

𝑅𝑒𝑐.𝐷 (using a UNet

based network) to obtain corresponding reconstruction results:

-

𝑶 𝐶 

= 𝑅𝑒𝑐.𝐷(𝒁 𝐶 

), 𝑶 𝑅 

= 𝑅𝑒𝑐.𝐷(𝒁 𝑅 

). (3) 

When 𝐶𝑙𝑠 is frozen, 𝑅𝑒𝑐.𝐸 is trained to reconstruct one feature from the

other. Conversely, with 𝑅𝑒𝑐.𝐸 frozen, 𝑶̂ 

 

and 𝑶̂ 

 

 

are obtained,𝐶 𝑅   and 𝐶𝑙𝑠
is trained to generate 𝑴 that𝐶  hinders the reconstruction of the original

image.

Furthermore, considering the potential activation drift or instability 

in CAMs introduced by the adopted adversarial training scheme, along 

with the inherently slender and low-contrast nature of cracks, we pro-

pose a center-enhanced CAM consistency module (CECCM) to better 

guide the generation of 𝑴 𝐶 

. This module enhances spatial alignment be-

tween 𝐶𝑙𝑠 and 𝑅𝑒𝑐.𝐸 by applying Gaussian-based center weighting and
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Fig. 3. The proposed PAAM, consisting of a spatial attention branch and a 

channel attention branch.

enforcing consistency between the center-enhanced crack CAMs. Given 

an input crack image, 𝑴 

𝑟𝑒𝑐and are𝐶  𝑴 𝐶  obtained from 𝐶𝑙𝑠 and 𝑅𝑒𝑐.𝐸, 

respectively. Then, a center–enhancement operation is applied to both 

CAMs, guided by their spatial center of mass. Specifically, for a CAM 𝑀 , 

we compute its normalized spatial center as:

𝜇 𝑥 

=
∑ 

𝑥,𝑦 𝑥 ⋅ 𝑴(𝑥, 𝑦)
∑ 

𝑥,𝑦 

𝑴(𝑥, 𝑦) 

, 𝜇 𝑦 = 

∑ 

𝑥,𝑦 𝑦 ⋅ 𝑴(𝑥, 𝑦)
∑ 

𝑥,𝑦 𝑴(𝑥, 𝑦) 

. (4)

×Then, a spatial Gaussian prior 𝑮 ∈ R 

𝐻 𝑊 centered at (𝜇𝑥  

, 𝜇 𝑦 

) is 

constructed:

𝑮(𝑥, 𝑦) = exp 

( 

−
(𝑥 − 𝜇 𝑥 

) 

2 + (𝑦 − 𝜇 𝑦 

) 

2

2𝜎 

2

) 

, (5)

where 𝜎 controls the spread of the Gaussian. Then, the center-enhanced 

CAMs are obtained via element-wise multiplication:

𝑴 𝐶𝐺 

= 𝑴 𝐶 

⊙ 𝑮 𝐶 

, 𝑴 

𝑟𝑒𝑐
𝐶𝐺 = 𝑴 

𝑟𝑒𝑐
𝐶 ⊙ 𝑮 

𝑟𝑒𝑐
𝐶 . (6)

Finally, we impose a consistency loss between the two center-enhanced 

CAMs to encourage 𝐶𝑙𝑠 and 𝑅𝑒𝑐.𝐸 to produce spatially aligned and 

structure-consistent activations.

3.3. Iterative training of detector

 

 

𝐶Given an input crack image 𝑰 , we empirically select the output fea

ture map from an intermediate residual block in both 𝐶𝑙𝑠 and 𝑅𝑒𝑐.𝐸 

as the input to 𝐷𝑒𝑡. This layer leverages dilated convolutions to ex

tract abundant semantic representations while maintaining a relatively
𝑠high spatial resolution. The obtained feature maps are denoted as 𝒁𝐶𝑙  

           𝑖𝑛
and 𝒁 

𝑅𝑒𝑐 , which provide high-level semantic information and low-level𝑖𝑛   

structural cues for the training of 𝐷𝑒𝑡.

-

-

  

𝐶To effectively fuse these features, we concatenate them 

𝑜𝑛as 𝒁  

  and𝑖𝑛  

feed the result into a novel attention mechanism named Path-Aware 

Attention Module (PAAM), which enhances the discriminative capabil

ity of the fused representation, especially by adaptively emphasizing 

crack-relevant regions through modeling both spatial and channel-wise 

-

dependencies. The structure of PAAM is illustrated in Fig. 3, consisting of 

a spatial attention branch and a channel attention branch. To capture the 

directional characteristics of cracks, we apply directional convolutions 

𝐷 𝜃(⋅)  

 along   

 four orientations 𝜃 ∈ {0 

◦, 45◦ , 90◦ ,  

 

135◦ }. For each direction,

we compute the absolute response:

𝑅 𝜃 

= |𝐷 𝜃 

(𝒁𝐶𝑜𝑛
𝑖𝑛 )|, (7)

and the spatial attention map 𝐴 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 

is obtained by aggregating the 

directional responses followed by a sigmoid activation 𝛿:

𝐴 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 

= 𝛿(𝑅 0 

◦ + 𝑅 45 

◦ + 𝑅 90 

◦ + 𝑅 135 

◦ ). (8)

The spatial attention map serves as a soft mask that highlights potential 

crack paths across the feature map. We perform path-weighted fusion by

applying this attention to the input feature via element-wise multiplica-

tion, followed by a convolution block with 1 × 1 kernel size to reduce 

computational cost and refine the fused features:

𝒁 

𝑠𝑝𝑎𝑡𝑖𝑎𝑙
𝑖𝑛 = 𝑅𝑒𝐿𝑈 (𝐵𝑁(𝑊 1×1 

(𝒁𝐶𝑜𝑛
𝑖𝑛 ⊙ 𝐴 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 

))). (9)

𝑠𝑝𝑎𝑡𝑖𝑎𝑙
Then, 𝒁 is𝑖𝑛  fed into the channel attention branch, which models 

inter-channel dependencies by emphasizing informative feature chan

nels to better capture complementary cues such as texture, edges, 

and context for crack detection. Following the squeeze-and-excitation 

paradigm, we apply a global context aggregation using adaptive average 

pooling to obtain a channel-wise descriptor:

-

𝒔 = 𝐴𝑣𝑔𝑃 𝑜𝑜𝑙(𝒁𝑠𝑝𝑎𝑡𝑖𝑎𝑙
𝑖𝑛 ) ∈ R 

𝐶×1×1 . (10)

The descriptor is then reshaped into a vector and passed through two 

fully connected layers, interleaved with ReLU and sigmoid activations, 

to generate the channel attention map:

𝐴 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 

= 𝛿(𝐹 𝑐(𝑅𝑒𝐿𝑈 (𝐹 𝑐(𝑠 𝑓𝑙𝑎𝑡𝑡𝑒𝑛 

)))). (11) 

Finally, the reshaped channel attention map is element-wise multiplied

with 𝒁𝑠𝑝𝑎𝑡𝑖𝑎𝑙
 to produce 𝒁 

𝐹 , which serves𝑖𝑛 𝑖𝑛   as the input to 𝐷𝑒𝑡 (composed 

of a series of convolution and transposed convolution layers).

To enable the network to learn the mapping from input crack im-

age to pixel-wise road crack detection results 𝒀 𝑜𝑢𝑡 

, we train 𝐷𝑒𝑡 using 

the pseudo label 𝒀 𝑝𝑠𝑒 

, which is obtained by post-processing the corre-

sponding crack CAM with dense Conditional Random Fields (denseCRF) 

[47]. The denseCRF algorithm refines the coarse CAM by modeling 

long-range dependencies between pixels based on both spatial proximity 

and color similarity. It encourages pixels with similar appearances and 

close spatial distances to be assigned the same label, which is particu-

larly effective for road crack detection where cracks are often thin and 

low-contrast.

Since the quality of crack CAMs evolves during training, the pseudo 

labels are dynamically updated, making the learning process inherently 

iterative. To further improve training robustness, we introduce a selec-

tion mechanism that filters out pseudo labels that are entirely empty 

(i.e., all-black masks), thereby avoiding supervision from uninformative 

samples and enhancing the quality of the learning process.

3.4. Loss function

For the training of WP-CrackNet, the total loss function is defined as 

follows:

L 𝑡𝑜𝑡𝑎𝑙 

= L 𝑅𝑒𝑐 

+ L 𝐶𝑙𝑠 

+ L 𝐷𝑒𝑡, (12)

where L 𝑅𝑒𝑐 

, L , ,𝐶𝑙𝑠  and L𝐷  

denote the training losses for and𝑒𝑡      

 

𝑅𝑒𝑐  𝐶𝑙𝑠  

𝐷𝑒𝑡. During training, L and L are𝑅𝑒𝑐 𝐶 𝑙𝑠  

 

alternately optimized with the

other module frozen, and the parameters of 𝐷𝑒𝑡 are consistently updated 

with L detection.𝑒𝑡 

to guide precise𝐷   road crack 

3.4.1. Reconstructor loss

Given an input image 𝑰 , we first use the standard binary cross

entropy (BCE) loss between  

 the class prediction 𝑞 

𝑟𝑒𝑐 and image-level 

𝑅ground-truth label 𝑻 ∈ {𝑻   

     ,𝑻 

𝐶} to facilitate the learning of classifi

cation ability, denoted as:

-

-

L 𝑐𝑙𝑠1 

= − 

[ 

𝑻 log 𝛿(𝑞 

𝑟𝑒𝑐 ) + (1 − 𝑻 ) log(1 − 𝛿(𝑞 

𝑟𝑒𝑐 )) 

] 

. (13)

As mentioned above, we train 𝑅𝑒𝑐 to reconstruct one feature from the 

other. To ensure consistency, we minimize the difference between the 

reconstructed result and the input crack image within the opposite 

class region. Specifically, for crack and road features, we minimize the
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Table 1 

Ablation study results for pixel-wise crack detection performance to investigate the impact of integrating outputs of 𝐶𝑙𝑠 and 𝑅𝑒𝑐.𝐸, and to 

validate the effectiveness of the proposed CECCM and PAAM on the DeepCrack dataset [31]. The symbol ✓  indicates the used module for the 

training of the detection branch.

𝐶𝑙𝑠 𝐷𝑒𝑡 𝑅𝑒𝑐.𝐸 CECCM PAAM Precision (%)↑ Recall (%)↑ Accuracy (%)↑ F1-Score (%)↑ IoU (%)↑

✓  ✓ 90.111 68.308 98.305 77.709 63.545

✓  ✓  ✓ 83.920 74.032 98.263 78.666 64.835

✓  ✓  ✓ ✓ 83.828 78.341 98.409 80.992 68.055

✓  ✓  ✓ ✓ ✓ 82.868 80.682 98.443 81.760 69.148

Fig. 4. Ablation study results illustrating crack CAMs (b, d, f) obtained under dif-

ferent training strategies—classifier only, adversarial training, and adversarial 

training with CECCM—and their corresponding pseudo labels (c, e, g) produced 

via denseCRF, with (a) showing the input image.

following losses:

L 

𝐶
𝑟𝑒𝑐𝑜𝑛1 = |(1 − 𝑴 

𝑟𝑒𝑐
𝐶 ) ⊙ (𝑰 𝐶 

− 𝑶 𝐶 

)| 1, (14)

L 

𝑅
𝑟𝑒𝑐𝑜𝑛1 = |𝑴 𝑟𝑒𝑐

𝐶 ⊙ (𝑰 𝐶 − 𝑶 𝑅 

)| 1 

, (15)

where | ⋅ | 1 

represents L1 loss. Therefore, the final reconstructor loss is 

formulated as follows:

L 𝑅𝑒𝑐 

= 𝜆 𝑐1 

L 𝑐𝑙𝑠1 + 𝜆 

𝐶
𝑟1L 

𝐶 

𝑟𝑒𝑐𝑜𝑛1 + 𝜆 

𝑅
𝑟1L 

𝑅
𝑟𝑒𝑐𝑜𝑛1, (16) 

where 𝜆 𝑐1, 𝜆 

𝐶 ,𝑟1  and 𝜆 

𝑅
 

are𝑟1  weighting parameters used to harmonize these

losses, and we have L = 𝜆𝐶 L 

𝐶 𝑅
𝑟𝑒𝑐𝑜𝑛1 𝑟1 𝑟𝑒𝑐𝑜𝑛1 + 𝜆 L𝑅 .𝑟1 𝑟𝑒𝑐 𝑜𝑛1 

3.4.2. Classifier loss

Given an input image 𝑰 , similarly, the BCE loss is employed to 

facilitate the learning of classification ability for 𝐶𝑙𝑠:

L 𝑐𝑙𝑠2 

= − 

[ 

𝑻 log 𝛿(𝑞) + (1 − 𝑻 ) log(1 − 𝛿(𝑞)) 

] 

. (17)

For input crack images, the objective of 𝐶𝑙𝑠 is to generate crack CAMs 

that hinder 𝑅𝑒𝑐 from reconstructing the original image. To this end, we 

minimize the similarity between the reconstruction results and the input 

image on crack region, with a similar constraint also applied to the road 

region:

L 

𝐶
𝑟𝑒𝑐𝑜𝑛2 = −|(1 − 𝑴 𝐶 

) ⊙ (𝑰 𝐶 

− ̂ 𝑶 𝐶 

)| 1 

, (18)

L 

𝑅
𝑟𝑒𝑐𝑜𝑛2 = −|𝑴 𝐶 

⊙ (𝑰 𝐶 

− 

̂ 𝑶 𝑅 

)| 1 

. (19)

Furthermore, a consistency loss between center-enhanced crack CAMs 

from 𝐶𝑙𝑠 and 𝑅𝑒𝑐 is designed to enforce spatial alignment and enhance

the focus on central crack regions, thereby facilitating more accurate 

and robust crack localization, which is denoted as:

L 𝐶𝐸𝐶 = 

1
𝐻𝑊 

∑ 

|𝑴 𝐶𝐺 − 𝑴 

𝑟𝑒𝑐
𝐶𝐺|. (20)

Therefore, the final classifier loss is formulated as follows:

L 𝐶𝑙𝑠 

= 𝜆 𝑐2 

L 𝑐𝑙𝑠2 + 𝜆 

𝐶 

𝑟2L 

𝐶
𝑟𝑒𝑐𝑜𝑛2 + 𝜆 

𝑅 

𝑟2L 

𝑅
𝑟𝑒𝑐𝑜𝑛2 + 𝜆 𝑐𝑒𝑐 

L 𝐶𝐸𝐶 

, (21) 

where 𝜆 𝑐2 

, 𝜆 

𝐶
𝑟2, 𝜆 

𝑅 

𝑟2, and 𝜆 𝑐𝑒𝑐 

are weighting parameters used to harmonize

these losses. We have L 𝑟𝑒𝑐𝑜𝑛2 

= −𝜆 

𝐶
𝑟2L 

𝐶
𝑟𝑒𝑐𝑜𝑛2 − 𝜆 

𝑅 

𝑟2L 

𝑅
𝑟𝑒𝑐𝑜𝑛2 

.

3.4.3. Detector loss

Given input crack image 𝐼 , as illustrated in 3.3, we can obtain𝐶   road 

crack detection results 𝒀 

 

by passing through 𝐶𝑙𝑠, ,𝑜𝑢𝑡  𝑅𝑒𝑐  and 𝐷𝑒𝑡. The 

detector is trained using the corresponding pseudo label 𝒀 𝑝𝑠𝑒 

, and the 

detector loss is denoted as:

L 𝐷𝑒𝑡 = − 1
𝐻𝑊

∑ 

[ 

𝒀 𝑝𝑠𝑒 

log 𝛿(𝒀 𝑜𝑢𝑡 

) + (1 − 𝒀 𝑝𝑠𝑒 

) log 

( 

1 − 𝛿(𝒀 𝑜𝑢𝑡 

) 

)

] 

. (22)

4. Experimental results 

4.1. Datasets

The Crack500 [29] dataset consists of 500 high-resolution road im-

ages (2000 × 1500 pixels) with pixel-level annotations. Each image is 

divided into 16 non-overlapping regions, and those with over 1000 crack 

pixels are retained, yielding 1896 training, 348 validation, and 1124 test 

images. This dataset includes four crack types and poses challenges such 

as shadows, occlusions, and varying lighting. For our experiments, su-

pervised methods are trained on the original dataset with all images 

resized to 256× 256 pixels for consistency. Additionally, we create a new 

training set by combining 756 undamaged road images cropped from the 

original dataset with 1896 crack images, and assign image-level labels to 

facilitate the training of weakly-supervised methods.

The DeepCrack [31] dataset consists of 537 pixel-level annotated 

images of cracks on concrete and asphalt surfaces across various scenes 

and scales. Each image is captured at a resolution of 544× 384 pixels and 

split into 300 training and 237 test images. Similarly, we train supervised 

methods on the original dataset with the size of 256 × 256 pixels and 

create a new training set for weakly-supervised methods by combining 

296 undamaged road images (cropped and rescaled from the original 

dataset) with 300 crack images, all labeled at the image level.

The CFD [48] dataset consists of 118 high-quality images of concrete 

surfaces with cracks ranging from 1 mm to 3 mm in width, each anno-

tated at the pixel level with a resolution of 480 × 320 pixels. The dataset 

features diverse illumination conditions, increasing the difficulty of ac-

curate crack detection. For experiments, 70 images are used for training 

and 48 for testing, all resized to 256 × 256 for the training of supervised 

methods. To support weakly-supervised methods and account for the 

subtle nature of cracks in this dataset, we enlarge each image in the 

training set and divide it into a 3 × 3 grid of patches. This results in 

a new training set consisting of 268 crack images and 256 undamaged 

images, all annotated with image-level labels.
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Table 2 

Quantitative experimental results of pixel-wise crack detection performance on the Crack500 dataset [29].

Training strategy Methods Precision (%)↑ Recall (%)↑ Accuracy (%)↑ F1-Score (%)↑ IoU (%)↑

Specific supervised Deepcrack19 [31] 57.581 86.733 95.687 69.213 52.920

Deepcrack18 [27] 70.919 70.356 96.731 70.636 54.603

Crack-Att [49] 66.497 70.883 96.376 68.620 52.230

HrSegNet [50] 67.652 74.092 96.572 70.726 54.710

CT-crackseg [33] 62.158 72.126 96.472 66.772 50.119

Weakly-supervised AEFT [21] 68.406 26.986 95.222 38.703 23.995

OC-CSE [20] 62.014 26.897 94.993 37.520 23.092

VWL [51] 85.821 4.019 94.598 7.6782 3.992

ACR [22] 6.580 75.302 38.859 12.103 6.441

WS-SCS [23] 72.904 38.411 95.759 50.314 33.613

WP-CrackNet 71.812 55.579 96.298 62.661 45.625

Unsupervised UP-CrackNet [34] 65.377 58.609 95.484 61.808 44.726

Table 3 

Quantitative experimental results of pixel-wise crack detection performance on the DeepCrack dataset [31].

Training strategy Methods Precision (%)↑ Recall (%)↑ Accuracy (%)↑ F1-Score (%)↑ IoU (%)↑

Specific supervised Deepcrack19 [31] 88.785 68.923 97.756 77.603 63.403

Deepcrack18 [27] 71.720 88.403 98.350 79.192 65.552

Crack-Att [49] 89.967 69.327 98.339 78.310 64.352

HrSegNet [50] 82.492 80.337 98.412 81.400 68.634

CT-crackseg [33] 85.381 78.838 98.501 81.979 69.461

Weakly-supervised AEFT [21] 81.899 68.112 97.969 74.372 59.199

OC-CSE [20] 89.786 66.131 98.209 76.164 61.504

VWL [51] 86.356 56.650 97.738 68.418 51.996

ACR [22] 88.339 66.424 98.168 75.829 61.069

WS-SCS [23] 98.499 30.722 96.952 46.836 30.579

WP-CrackNet 82.868 80.682 98.443 81.760 69.148

Unsupervised UP-CrackNet [34] 63.412 88.852 98.049 74.006 58.738

Table 4 

Quantitative experimental results of pixel-wise crack detection performance on the CFD dataset [48].

Training strategy Methods Precision (%)↑ Recall (%)↑ Accuracy (%)↑ F1-Score (%)↑ IoU (%)↑

Specific supervised Deepcrack19 [31] 20.892 88.142 94.372 33.778 20.321

Deepcrack18 [27] 46.231 69.159 98.188 55.417 38.329

Crack-Att [49] 70.086 43.530 98.778 53.705 36.710

HrSegNet [50] 29.782 43.474 98.322 35.348 21.469

CT-crackseg [33] 60.907 54.916 98.692 57.757 40.604

Weakly-supervised AEFT [21] 93.233 4.008 98.432 7.685 3.996

OC-CSE [20] 81.154 6.397 98.452 11.860 6.304

VWL [51] 94.161 3.746 98.429 7.206 3.738

ACR [22] 80.268 4.217 98.423 8.013 4.174

WS-SCS [23] 77.764 2.485 98.400 4.816 2.468

WP-CrackNet 62.262 49.682 98.690 55.265 38.184

Unsupervised UP-CrackNet [34] 10.978 63.785 90.987 18.731 10.333

4.2. Implementation details

All experiments are conducted on a single NVIDIA RTX 4090 GPU, 

with each model trained for 200 epochs. The initial learning rate is set to 

0.001 and adjusted dynamically using the polynomial decay policy. To 

enhance generalization, standard data augmentation techniques such as 

random cropping, resizing, and horizontal flipping are applied to the 

input images. Following the empirical settings suggested in [22], we

configure the loss weights as follows: for L ,𝑅𝑒𝑐  we set 𝜆  

 𝑐1 

= 1 and

𝜆 

𝐶 = 𝜆 

𝑅 = 0.5; for L ,𝑟1 𝑟1 𝐶 𝑙𝑠  we use 𝜆  

 𝑐2 

= 1, 𝜆 

𝐶 , 𝑅 , and𝑟2 = 0.8  𝜆 𝑟2 = 0.3  

𝜆 

 

= 0.5.𝑐𝑒𝑐
During inference on the CFD dataset, each image is divided into a 

3 × 3 grid of patches, which are resized and classified by 𝐶𝑙𝑠 to fil-

ter out background regions. Only patches predicted to contain cracks 

are passed to the detection module, and final result is obtained by 

merging the outputs from these selected patches. For fair compari-

son, all weakly-supervised methods for comparison are processed using 

denseCRF refinement following CAM generation. Additionally, they are

trained using the same 𝑅𝑒𝑐 and 𝐷𝑒𝑡 architecture as our method. For eval-

uation, we adopt a comprehensive set of metrics, including precision, 

recall, accuracy, IoU, and F1-score, to quantitatively assess the detec-

tion performance of WP-CrackNet against existing methods. In addition, 

model parameters and frames per second (FPS) are used to evaluate the 

model complexity and processing speed.

4.3. Ablation study

To assess the impact of integrating both high-level semantic in-

formation and low-level structural cues from 𝐶𝑙𝑠 and 𝑅𝑒𝑐.𝐸, and to 

evaluate the effectiveness of the proposed CECCM and PAAM, we con-

duct an ablation study on the DeepCrack dataset [31]. The quantitative 

experimental results are presented in Table 1. The first row shows crack 

detection results using only 𝐶𝑙𝑠 and 𝐷𝑒𝑡, while the last row represents 

the process of obtaining fused feature map through 𝐶𝑙𝑠 and 𝐷𝑒𝑡, which 

is then enhanced by PAAM, with crack CAMs further improved by the 

CECCM for better generation of pseudo labels. The experimental results
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Fig. 5. Examples of experimental results on the (I) CFD [48], (II) DeepCrack [31], and (III) Crack500 [29] datasets: (a) Input images; (b) Ground Truth; (c) Deepcrack19 

[31]; (d) Deepcrack18 [27]; (e) Crack-Att [49]; (f) HrSegNet [50]; (g) CT-crackseg [33]; (h) AEFT [21]; (i) OC-CSE [20]; (j) ACR [22]; (k) WS-SCS [23]; (l) UP-CrackNet 

[34]; (m) WP-CrackNet.

that integrate all these modules attain the best detection performance, 

demonstrating the effectiveness of the proposed CECCM and PAAM.

In addition, qualitative experiments are conducted to visually vali-

date the effectiveness of the adopted adversarial training strategy and 

the proposed CECCM. The results in Fig. 4 indicate that the adversarial 

training strategy enables crack CAMs to fully cover crack regions, while

the proposed CECCM enhances the generation and spatial aggregation 

of crack CAMs. Furthermore, with the aid of denseCRF, high-quality 

pseudo labels can be derived for the training of pixel-wise road crack 

detection. In Fig. 4, (a) is the input image; (b), (d), and (f) are crack 

CAMs obtained under different training settings (classifier only, adver-

sarial training, and adversarial training with CECCM, respectively); and
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(c), (e), and (g) are their corresponding pseudo labels after applying 

denseCRF.

4.4. Comparison with SoTA methods

To validate the effectiveness of our proposed WP-CrackNet, we 

conduct a comprehensive comparison against four SoTA general weakly-

supervised semantic methods, five supervised methods, one weakly-

supervised method, and one unsupervised method specifically designed 

for road crack detection. The evaluation is performed on the Crack500 

[29], Deepcrack [31], and CFD [48] datasets. Quantitative and qual-

itative results are presented in Tables 2–4 and Fig. 5, respectively. 

The results clearly indicate that WP-CrackNet achieves detection perfor-

mance comparable to road crack detection-specific supervised methods 

while utilizing only image-level labels, outperforming other weakly-

supervised methods as well as the unsupervised method.

Specifically, across the three datasets, our proposed WP-CrackNet 

demonstrates an improvement in IoU of 12.012 % − −41.633 %, 7.644 % − 

−38.569 %, and 31.880 %−−35.716 % compared to other SoTA general and 

road crack detection-specific weakly-supervised methods. These results 

stem from WP-CrackNet’s online and iterative pseudo-label generation 

with a selection mechanism, which reduces noise and enhances label 

reliability, as well as the incorporation of CECCM and PAAM. CECCM 

enables more precise crack CAMs, while PAAM effectively fuses high-

level semantics from the classifier with low-level structural cues from 

the reconstructor by modeling spatial and channel-wise dependencies. 

Furthermore, compared with the road crack detection-specific method 

WS-SCS, WP-CrackNet reduces reliance on hand-crafted cues and adopts 

an end-to-end joint optimization strategy, leading to greater adaptability 

and robustness.

When compared to five supervised methods tailored for road crack 

detection, WP-CrackNet exhibits only a marginal IoU drop of 0.313 % 

and 2.420 % compared to CT-crackSeg [33] and outperforms other su-

pervised methods on the DeepCrack and CFD datasets. On the Crack500 

dataset, it experiences an IoU decrease of 4.494 %–9.085 % relative 

to these supervised methods. The relatively lower performance on the 

Crack500 dataset can be attributed primarily to two factors: (1) Higher 

scene variability and diverse crack morphologies: Crack500 contains 

four crack types with variations in widths, lengths, and branching 

patterns, captured on different road materials under diverse condi-

tions. Real-world challenges such as shadows, occlusions, and lighting 

variations, together with complex background textures, increase intra-

class variability and make crack boundary localization more difficult 

when only image-level labels are available; (2) More pixel-level labels 

for supervised methods: Crack500 contains a larger number of finely 

annotated pixel-level labels than the other datasets, allowing super-

vised networks to learn precise geometric priors and handle small or 

partially occluded cracks more effectively. In contrast, WP-CrackNet 

relies on implicit localization through image-level cues, which lim-

its its boundary accuracy in these cases. Nevertheless, considering the 

substantial reliance of supervised techniques on extensive pixel-level 

manual annotations, our proposed WP-CrackNet, which achieves com-

parable detection results using only image-level labels, offers significant 

potential to enhance the scalability of road defect detection.

Furthermore, in comparison to the unsupervised method UP-

CrackNet [34], WP-CrackNet achieves improvements in IoU by 0.899 %, 

10.410 %, and 27.851 % on the Crack500, DeepCrack, and CFD datasets, 

respectively. The results align with the intuitive expectation that lever-

aging image-level label information generally leads to better detection 

performance than methods that do not utilize any label information. 

Notably, for datasets such as CFD, where cracks are thin and not ob-

vious, our proposed WP-CrackNet exhibits superior accuracy in crack 

boundary prediction while effectively suppressing noise in the detection 

results.

Table 5 reports model parameters and processing efficiency of WP-

CrackNet and representative supervised road crack detection methods

Table 5 

Quantitative experimental results in terms of model parameters and processing 

efficiency.

Methods Model parameters (𝑀)↓ FPS (on RTX3090)↑

Deepcrack18 [27] 30.905 59.175

Deepcrack19 [31] 14.720 287.888

SCCDNet [52] 31.705 143.585

Crack-Att [49] 45.804 64.710

HrSegNet [50] 9.641 285.635

CDLN [53] 19.151 67.984

LECSFormer [54] 16.528 96.881

CT-crackseg [33] 22.882 36.890

WP-CrackNet 86.458 73.613

on an NVIDIA RTX3090 using 256 × 256 inputs. For WP-CrackNet, in 

the inference phase, only the trained 𝑅𝑒𝑐.𝐸, 𝐶𝑙𝑠, 𝐷𝑒𝑡, and the PAAM 

are required for processing the test data. Experimental results show that 

WP-CrackNet has a slightly larger number of parameters compared with 

these supervised methods, and its FPS ranks at a moderate level. The 

relatively larger parameter size of WP-CrackNet is mainly attributed 

to the multi-module collaborative training strategy designed to achieve 

weakly supervised road crack detection. Considering that WP-CrackNet 

requires only image-level annotations while delivering detection perfor-

mance comparable to supervised methods, it remains highly practical. 

In future iterations, techniques such as model pruning and knowledge 

distillation will be employed to compress the parameter size, along with 

hardware-friendly designs, to make the model suitable for deployment 

on edge devices (such as drones) for real-time road crack detection 

tasks.

5. Conclusion

In this paper, we propose WP-CrackNet, an innovative end-to-end 

weakly-supervised road crack detection method that leverages image-

level labels to reduce reliance on costly pixel-level annotations, greatly 

enhancing the scalability of road inspection. WP-CrackNet consists of 

three components: a classifier that creates CAMs, a reconstructor that 

assesses the inferability between road and crack features, and a detec-

tor that outputs pixel-wise road crack detection results. The classifier 

and reconstructor are trained adversarially in turns, while the detector 

is trained with pseudo labels derived from post-processed crack CAMs. 

Our designed PAAM effectively fuses high-level semantics from the clas-

sifier and low-level structural cues from the reconstructor by modeling 

spatial and channel-wise dependencies, improving the detection perfor-

mance. Additionally, the proposed CECCM improves the quality of crack 

CAMs through center Gaussian weighting and consistency constraints, 

optimizing pseudo-label generation. Extensive experiments conducted 

on three datasets demonstrate the effectiveness of WP-CrackNet and its 

superiority over SoTA general and road crack detection-specific weakly-

supervised methods in detecting road cracks by only using image-level 

labels.

Future work will focus on compressing and accelerating WP-

CrackNet through model pruning and knowledge distillation, enabling 

not only cloud-based detection but also real-time deployment on edge 

devices. Additionally, we plan to incorporate a small amount of fine-

grained pixel-level annotations for joint training, aiming to further 

improve detection performance and enhance domain adaptation capa-

bilities.
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