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Abstract—Road crack detection is vital for intelligent
transportation and infrastructure maintenance. In recent
years, deep learning-based methods have emerged for auto-
mated road crack detection with enhanced performance.
Nevertheless, existing methods fail to balance detection
performance, model complexity, and processing efficiency,
hindering their deployment in autonomous road inspection
systems. To fill this gap, we propose a novel lightweight
network for real-time road crack detection, called the
Lightweight Real-time Pixel-wise Road Crack Detection Net-
work (LR-CrackNet). It employs a teacher-student (TS)
network architecture, where the teacher network leverages
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both image data and adaptively self-derived boundary information from pixel-level annotations, while the student network
relies solely on image input. The training process focuses on distilling the teacher network’s detection capabilities
into the student network. Both networks share a U-shaped segmentation design, integrating novel residual dual-layer
depthwise convolution (RDLDC) blocks and a fast Transformer block for efficient integration of detailed hierarchical
spatial information and global long-range contextual information. Furthermore, an attention-enhanced discriminator
network is designed, which aims to improve detection performance by enforcing global consistency and providing
pixel-level feedback. Comprehensive experimental results demonstrate that LR-CrackNet achieves state-of-the-art (SoTA)
detection performance on the UDTIRI-Crack, DeepCrack, and CamCrack789 datasets and surpasses existing publicly
available algorithms in processing efficiency, with 324.40 frames per second (FPS) on a single NVIDIA RTX3090. The
source code package is available at https://mias.group/LR-CrackNet/

Index Terms— Civil infrastructure maintenance, computer vision, deep learning, image processing, road crack.

. INTRODUCTION
OAD cracks can signal potential structural deterioration
in urban transportation networks. If left unaddressed,
they may propagate into more severe defects, substantially
threatening infrastructure reliability and driving safety [1], [2].
For instance, in the United States, poor road conditions impose
an annual average cost of $324 per driver in vehicle repairs [3].
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In the U.K., poor road surfaces contributed to 12.6% of all
traffic accidents in 2020 [4]. Therefore, regular and systematic
road inspections are crucial for minimizing the risks associated
with structural deterioration and traffic accidents [5]. However,
current road crack detection still relies on manual inspection
performed by certified engineers, the process of which is labor-
intensive, expensive, and fraught with safety hazards [6], [7].
In addition, the inspection results are subjective, constrained
by the inspector’s experience and judgment [8], [9]. Therefore,
the development of automated road crack detection methods
is imperative.

With the rise of deep learning, researchers have increas-
ingly adopted convolutional neural networks (CNNs) and
Transformer-based models for road crack detection, aiming
to enhance accuracy and robustness while reducing reliance
on handcrafted features [10]. These methods are typically
categorized into: 1) image classification networks that dis-
tinguish crack from noncrack images; 2) object detection
networks that localize and classify crack instances; and
3) semantic segmentation networks that perform pixel-wise
crack detection and have become the mainstream approach.
For instance, Deepcrack [11] enhanced the fully convolutional
network (FCN) [12] by integrating side-output layers and
employing conditional random fields alongside guided filtering
for improved road crack detection results. To support practical
deployment, ECSNet [13] integrated small kernel convolutions
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Fig. 1. Comparison results of eight road crack detection-specific meth-
ods and the proposed LR-CrackNet in terms of detection performance
(loU), model complexity (parameters), and processing efficiency (FPS).

and parallel max-pooling to enhance model efficiency while
maintaining detection performance.

However, as shown in Fig. 1, none of the existing pub-
lic methods for road crack detection can balance detection
performance, model complexity, and processing efficiency.
To fill this gap, we propose a novel Lightweight Real-time
Pixel-wise Road Crack Detection Network (LR-CrackNet) via
self-derived multimodal knowledge distillation. Specifically,
a teacher—student (TS) network architecture is employed, and
the training process focuses on distilling the teacher network’s
detection capabilities into the student network. The teacher
network is pretrained using both image data and boundary
information adaptively self-derived by a designed dynamic
morphological iteration algorithm (DMIA), while the student
network learns solely on image input. Both teacher and stu-
dent networks share a U-shaped segmentation design, where
novel RDLDC blocks and a novel fast Transformer block are
proposed to efficiently integrate detailed hierarchical spatial
information with global long-range contextual information
for obtaining precise and robust crack detection results. Fur-
thermore, during the training process, we propose a novel
attention-enhanced discriminator network, which can improve
the detection performance from high-dimensional global and
local supervision via adversarial training. We validate the
effectiveness of our proposed method on three public road
crack datasets. Extensive experiments show that LR-CrackNet
achieves state-of-the-art (SoTA) detection performance and
surpasses existing methods in processing efficiency. The main
contributions are as follows.

1) We propose LR-CrackNet, a novel lightweight net-
work for real-time pixel-wise road crack detection via
self-derived multimodal knowledge distillation.

2) We employ a TS framework, where the teacher utilizes
both image and self-derived boundary information, while
the student learns solely from images, enabling effective
knowledge transfer.

3) We design U-shaped segmentation networks, integrating
novel RDLDC blocks and a fast Transformer block
to efficiently combine hierarchical spatial details with
global contextual information.

4) We design an attention-enhanced discriminator net-
work, which can enhance detection performance by
enforcing global consistency and providing pixel-level
feedback.

Il. RELATED WORKS

Recent advances in deep learning have led to the extensive
use of CNNs and Transformer-based models for pixel-wise
road crack detection. For instance, [14] proposed another
Deepcrack, which fuses multiscale features from SegNet [15]
to learn hierarchical information for improved road crack
detection results. DMA-Net [16] added a multiscale attention
module into the decoder of Deeplabv3+ [17] for gener-
ating attention masks and dynamically modulating weights
across feature maps, thereby enhancing road crack detection
performance. [18] combined Swin-Transformer [19] blocks
with MLP layers, which can capture long-range dependencies
for better feature representation of crack areas. However,
to achieve higher detection accuracy, these methods inevitably
introduce structural redundancy, which increases model com-
plexity and computational inefficiency.

To facilitate the practical deployment of road crack detection
models, lightweight CNN-based methods have been devel-
oped. For instance, [20] proposed RHACrackNet, using a
hybrid attention block and integrating residual blocks into
deeper encoder layers to maintain feature extraction with
fewer parameters. Zhou et al. [21] introduced a split exchange
convolution (SEConv) module, which splits feature maps into
high and low-resolution parts, filtering redundant information
and enhancing feature reuse. Li et al. [22] proposed HrSegNet,
combining high-resolution and semantic paths with controlled
channel capacity and a two-stage segmentation head to balance
detection performance and efficiency.

However, lightweight methods often compromise model
depth or structure, potentially trading detection performance
for faster inference. To address this, some scholars have
explored using knowledge distillation in road crack detection.
For instance, [23] proposed LPCD-MSMD, a cascaded U-Net
with extra branches capturing fine features, transferring knowl-
edge via multiscale semantic map distillation to a student
network with fewer layers and compressed channels. Similarly,
[24] leveraged feature distillation to train a lightweight student
network with fewer layers than the teacher network. How-
ever, relying solely on single RGB images limits the teacher
network’s ability to capture cracks’ geometric characteristics,
restricting the student’s performance. Therefore, we propose
LR-CrackNet, a novel lightweight real-time pixel-wise road
crack detection method based on self-derived multimodal
knowledge distillation. The extensive experiments reveal the
superiority of LR-CrackNet in detection performance and
processing speed with a small number of model parameters.

[1l. METHODOLOGY

This section provides an in-depth overview of the proposed
LR-CrackNet. As illustrated in Fig. 2, we adopt a TS architec-
ture to facilitate knowledge transfer through feature distillation
and logits distillation training strategies. During the training
process, the teacher network is pretrained with multimodal
inputs, including both image data and corresponding boundary
information, which is adaptively self-derived by the designed
DMIA, whereas the student network only receives image
data. By constraining intermediate feature representations and
detection results, such a design enables the student network
to comprehensively learn the crack detection and boundary
sensing capabilities of the teacher network. To ensure feature
alignment, both teacher and student networks share the same
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Fig. 2. Overall architecture of LR-CrackNet.

U-shaped segmentation network. Furthermore, to enhance the
detection performance of the student network, we propose
a novel attention-enhanced discriminator network to provide
high-dimensional global and local supervision via adversarial
training. During the inference phase, only the U-shaped seg-
mentation network of the trained student network is employed
to output pixel-wise road crack detection results, thus avoiding
increased model complexity and computational overhead. The
remainder of this section describes the proposed U-shaped seg-
mentation network, attention-enhanced discriminator network,
DMIA, and the designed loss functions.

A. U-Shaped Segmentation Network

The proposed U-shaped segmentation network employs
an encoder—decoder architecture. The encoder comprises
dual-layer convolutional (DLC) blocks—two in the teacher
network (for initial feature extraction from the input image
and boundary map) and one in the student network (for initial
feature extraction from the input image)—followed by two
Down-RDLDC and two Down-DLC blocks for hierarchical
feature extraction. The decoder comprises two Up-DLC and
two Up-RDLDC blocks to map the extracted feature maps
to pixel-wise road crack detection results. Skip connections
between the encoder and the decoder facilitate the integration
of low- and high-level features. In addition, we integrated the
proposed Fast-Transformer block between the encoder and
the decoder, enabling the network to simultaneously learn
detailed hierarchical spatial and global long-range contextual
information while improving overall processing efficiency.

Specifically, each DLC block comprises two consec-
utive Conv-BatchNorm-ReLU blocks, enabling more

comprehensive information extraction compared to a sin-
gle block. The proposed RDLDC enhances the DLC by
improving both model performance and processing efficiency.
A cross-connection structure between convolutional layers is
designed to facilitate feature reuse, allowing the network to
better capture and leverage multiscale information, thereby
enhancing its feature representation capability. Furthermore,
depthwise (DW) convolution layers are introduced to replace
standard convolution layers, enabling independent convolution
operations for each input channel. This approach effectively
reduces parameters and computational costs while preventing
information interference between channels.

The proposed Fast-Transformer block is composed of an
attention embedding module (AEM), a residual feature mixer
module (RFMM), and an MLP. In detail, as illustrated in
Fig. 3(a), the core component of AEM is a channel-wise
spatial attention module. Compared with the standard patch
embedding module, this design can enhance the network’s
ability to perceive image structures, enabling it to capture
global context more effectively while maintaining spatial
structure awareness and adaptively focusing on discriminative
regions. The formulation of AEM can be expressed as

F, = F -0 (Conv; x Concat (CWAP (F), CWMP (F))) (1)
CWAP (F) (i, J)

1 C
=z ;nc, i, j) (2)
CWMP (F) (i. j)
= max F (c. . ]) 3)

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 26,2025 at 08:20:02 UTC from IEEE Xplore. Restrictions apply.



38274

IEEE SENSORS JOURNAL, VOL. 25, NO. 20, 15 OCTOBER 2025

'

GAP

haw

U
A

Conv

DWconv

|

Conv

ot

Q
Hﬂeqeg
=

i

y

<
B-

b

(@) (b) (©)

Fig. 3. Proposed (a) channel-wise spatial attention module. (b) Spatial
interaction module. (c) Channel interaction module.

where F denotes the input feature map, F, denotes the embed-
ded output, Concat denotes concatenation along the channel
dimension, Convy* represents the standard convolution oper-
ation with 7 x 7 kernel size, and o denotes the sigmoid
function. Notably, CWMP and CWAP represent channel-wise
max-pooling and average pooling operations, respectively.

Then, to enhance feature extraction while maintaining
processing efficiency, RFMM splits the embedded feature
map F, into two channel-wise segments: F,; and F,p. The
former undergoes lightweight spatial and channel interac-
tion operations [illustrated in Fig. 3(b) and (c)] to extract
context-enhanced features, which are then element-wise
multiplied with the latter to modulate and refine feature
representation. This design facilitates selective information
aggregation, which can improve the network’s expressive
power while reducing computational complexity compared
to other attention-based modules such as [25]. A residual
connection is further introduced to retain the original infor-
mation flow, enhancing training stability and convergence. The
formulation of RFMM is defined as

F, = F, + DWConv x ((DWConv % F,) - Fe2) (4
Fl, =F,, - o (Convy * (GAP (F.,))) )
F,; = F,1 - (Conv, x (DWConv x (F)) 6)

where F, denotes the refined feature map through RFMM,
DWConv: denotes DW convolution operation with 3 x 3 kernel
size, Convo* represents the standard convolution operation
with 1 x 1 kernel size, and GAP represents global average
pooling operations.

Thereafter, the refined feature map F, 1is passed
through a lightweight MLP, which serves to further
enhance the network’s feature representation ability and
avoid overfitting by modeling nonlinear dependencies
across channels. The structure of MLP comprises
Conv-GELU-Dropout—-Conv-Dropout.

B. Attention-Enhanced Discriminator

As illustrated in Fig. 2, the proposed attention-enhanced
discriminator adopts an encoder—decoder architecture. The
encoder consists of four Attention-Conv (AC) blocks, while
the decoder is composed of four standard transposed con-
volution blocks. The discriminator receives two sets of

concatenated data: one is the predicted pixel-wise crack detec-
tion results O conditioned on the input image / and another
is the ground-truth map Y conditioned on /. During training,
the discriminator is optimized to distinguish between real
(Y conditioned on [) and fake (O conditioned on [) inputs
from both global (over the whole concatenated data) and local
(per-pixel) aspects, while the U-shaped segmentation network
is simultaneously trained to generate O that can fool the
discriminator. This adversarial design helps to improve the
crack detection performance of the U-shaped segmentation
network in a higher-order way.

Specifically, in the encoder part, each ac block is composed
of Conv-BatchNorm-ReLU-directional-spatial
attention (DSA). We innovatively design a DSA mod-
ule, aiming to strengthen the representation of informative
features from both directional and spatial perspectives, thereby
enhancing the discriminator’s discriminative ability. DSA first
divides the input feature map into multiple subgroups along
the channel dimension for group-wise processing, allowing
each subgroup to extract features independently. This reduces
intergroup interference and promotes more diverse and dis-
criminative representations. Then, adaptive average pooling
is applied along vertical and horizontal directions to each
subgroup to capture directional global context. The resulting
features are concatenated and fused via a convolution opera-
tion to enable localized cross-channel interaction. The process
is formulated as follows:

F4 = Convy  Concat (AgPool, (Fg) , AgPool,, (Fg))  (7)
AgPool,, (Fy) (i, j)

ky
1 v
= 2 Festm ) ®)
m=1
AgPool,, (Fg) @, j)
| &
=k—hr§Fg(i,j~sh+n) ©)

where F, denotes the input feature map after subgrouping,
F,; denotes the output feature map after directional-attention
processing, AgPool, and AgPool,, represent vertical and hori-
zontal adaptive average pooling, respectively, k, and kj, denote
the size of pooling window in the vertical and horizontal
directions, respectively, and s, and s, denote vertical and
horizontal step lengths, respectively.

To further enhance spatial structure modeling, DSA incor-
porates the channel-wise spatial attention (introduced in
Section III-A) in a parallel branch. The designed directional
and spatial attention modules are jointly applied to each
subgroup, and their outputs are fused via element-wise mul-
tiplication to adaptively reweight feature responses, thereby
facilitating effective multiscale contextual integration. Sub-
sequently, DSA incorporates the global average pooling
operation (introduced in Section III-A) on the fused feature
map after group normalization to capture global dependencies.
Furthermore, a cross-connection strategy is employed, allow-
ing F, to be involved in the reweighting of feature responses,
which can reuse shallow feature information and alleviate the
loss of important details during informative feature extraction.

C. Dynamic Morphological Iteration Algorithm

Inspired by [26], we propose a novel DMIA, which
can adaptively extract boundary maps from corresponding
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ground-truth maps. These boundary maps are integrated with
image data as a multimodal signal for the training process
of the teacher network, thereby enhancing its sensitivity to
crack boundaries. Such boundary-awareness is then effectively
transferred to the student network via the designed knowledge
distillation training strategy. Notably, compared to [26], the
proposed DMIA can dynamically adjust its morphological
parameters in response to variations in crack width. This adap-
tive mechanism enables the algorithm to accommodate a wide
range of crack patterns and environmental conditions, thereby
ensuring more precise and robust boundary delineation.

After preprocessing, DMIA estimates an adaptive kernel
radius based on the input ground-truth map Y. Specifically,
a small elliptical structuring element is iteratively applied to
erode Y until the foreground region vanishes. The number of
erosion iterations required is then used to determine a suitable
kernel radius through proportional scaling. Based on this
radius, a diamond-shaped structuring element is constructed,
where the included pixels satisfy a predefined Manhattan
distance constraint. This structuring element is subsequently
used to dilate Y, and the boundary map is obtained by
subtracting Y from the dilated result.

D. Loss Function

For the training of LR-CrackNet, the total loss can be
formulated as follows:

L= )\KdEKd + )\SegESeg + AadvLadv (10)

where Agg, Aseg, and A4y are weighting parameters that
harmonize the designed knowledge distillation loss Lk, seg-
mentation loss Lgeg, and adversarial loss Laqy, respectively.

1) Knowledge Distillation Loss: As stated above, we adopt
two distillation training strategies to facilitate knowledge trans-
fer in the designed TS architecture. Thus, A4 consists of two
parts

(1)

where Lrp and Arp denote weighting parameters that har-
monize feature distillation loss Lpp and logits distillation
loss L1 p, respectively. In detail, we adopt a channel-wise
divergence (CWD) loss function to constrain intermediate
feature representations (from the third upsampling block of the
U-shaped segmentation network) and detection results between
the teacher network and the student network. Lrp and L p
are defined as

Lxa = rpLrp +ArLpLrD

N C

Lrp = ﬁ S > kL (¢ (Tn“}?) o (S,‘;}”f))
n=1 c=1 (12)
1 Al logits logits
Lip= e 2 2 KL (¢ (1) 16 (snE™))
n=1c=1
(13)
HW
KL(P|Q) = . P; - (log P; —log Q) (14
i=1 ETi
(l)(T)i:m, i=12,....H-W (15)

where N and C denote the batch size and the number of
feature channels, respectively, H and W denote the height

and width of the feature map, respectively, i is used to
index the spatial positions, and j is used as the summation
index over all spatial positions in the Softmax operation ¢.
Compared with traditional pixel-level knowledge distillation
losses, the proposed Lk, enables more fine-grained alignment
of semantic information at the channel level, which helps
improve the detection performance of the student model.

2) Segmentation Loss: To effectively guide the training
process of the student network, the designed segmentation loss
combines the binary cross-entropy (BCE) loss and dice loss,
denoted as

£seg = Abee LBCE *+ Adice LDice (16)

LBCE = _W 2 [Yij log O[j + (1 — Yij) IOg (1 — 0,']')]
L]
(17)
23 . 0,Y;+e
Lpice =1 Zl"’ gy (18)

20 0iit2Yij+e
where ¢ is a small constant to avoid division by zero. The
combined L, takes advantage of both BCE and dice losses;
the former ensures stable pixel-wise supervision, whereas the
latter improves region-level consistency, especially for detect-
ing thin and sparse cracks. This design facilitates effective
learning in challenging scenarios where cracks are fragmented
and cover only a small area of the image.

3) Discriminator Loss: Furthermore, to encourage the pro-
posed network to produce crack detection outputs O that
more closely align with the ground-truth map Y, we introduce
an adversarial loss L,qy to provide both global structural
supervision and local per-pixel feedback. The adversarial loss
Lagy is defined as

Eadv = )\DED + )\GEG
Lp =ip,Lp, +rp,Lp,

(19)
(20)
where Ap, Ag, ADg, and Ap, denote weighting parameters
that harmonize discriminator loss Lp, generator loss Lg,
global discriminator loss ,CDg, and local discriminator loss

Lp,, respectively. In detail, these loss functions are defined
as follows:

Lp, = — (Ey,1 [log Den (Y, D]

+Eo,1 [log (1 = Den (0, 1))])
Lp, =— By, [logD (Y, 1), ;]

+Eo,1 [log (1 =D (0,1);)])
Ls =—(Eo,[log Den (0, 1]

+Eo.1 [log D (0, 1);;])

where D,, represents the encoder part of the designed
attention-enhanced discriminator and D(Y, I); ; denotes the
discriminator decision at pixel (i, j).

IV. EXPERIMENTS
A. Datasets

The UDTIRI-Crack [27], [28] is a high-quality inte-
grated dataset consisting of 2500 road images (resolution:
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320 x 320) sourced from seven public datasets, which include
five crack types (alligator, transverse, longitudinal, multifur-
cate, and pit) under various road materials (concrete, asphalt,
etc.) and noise factors (oil spots, zebra crossing markings,
etc.). These images have been annotated at the pixel level.
The UDTIRI-Crack dataset is divided into three subsets, with
1500 images for training, 400 images for validation, and the
remaining 600 images for testing.

The DeepCrack [11] dataset contains 537 road images
(resolution: 544 x 384 pixels) with multiscale and multiscene
cracks. These images have also been annotated at the pixel
level. The DeepCrack dataset is randomly separated into
three subsets, with 210 images for training, 90 images for
evaluation, and the remaining 237 images for testing.

The CamCrack789 [20] dataset contains 789 road images
(resolution: 640 x 480) with four types of road cracks (com-
mon, intersecting, block, and alligator) under various noise
factors (water stains, leaves, debris, etc.). These images have
been annotated at the pixel level. The CamCrack789 dataset
is randomly separated into three subsets, with 328 images
for training, 218 images for evaluation, and the remaining
243 images used for testing.

B. Implementation Details

All experiments are conducted on a single NVIDIA
RTX3090. We use a progressive training strategy with
warm-up and learning rate decay to stabilize LR-CrackNet’s
training. First, the teacher network is trained for 50 epochs
with image data, and the learning rate (Ir) is set as le — 3 to
learn basic structural features. Then, boundary information is
added, and Ir is reduced to le —4 to support stable multimodal
learning with 100 training epochs. Finally, the student network
is trained for 200 epochs with Ir = le — 4 via knowledge
distillation and adversarial training. During training, the model
is evaluated on the validation set every 5 epochs, and the
parameters of the best validation performance are saved. In our
implementation, according to experimental experience, we set
{)\Ka'v )\Segs Aadv, AFD, )\Dg» )\Dl} =1, {)\bcev Adices )\G} = 0.5,
Ap = 04, and Arp as 1.5. To ensure fair comparison,
we adopt precision, recall, accuracy, intersection over union
(IoU), Fl-score, and average IoU (AloU) as evaluation met-
rics. In addition, model parameters and FPS are used to
evaluate the model complexity and processing speed.

C. Ablation Study

To assess the contribution of our proposed loss design,
we perform a series of ablation studies on the DeepCrack [11]
and CamCrack789 [20] datasets, as summarized in Table I.
The experimental results clearly indicate that each component
of the designed losses plays a meaningful role in enhancing
the model’s detection performance. Among all configurations,
the complete version of utilizing all losses achieves the best
detection performance, demonstrating the effectiveness of our
overall design. These findings highlight the advantages of the
proposed multimodal distillation architecture and the designed
adversarial training strategy.

Furthermore, we conduct ablation studies on the Deep-
Crack [11] and CamCrack789 [20] datasets to examine how
the integration of the designed RDLDC and fast Transformer
(Fast-T) blocks affects the tradeoff between detection perfor-
mance and processing efficiency in the proposed U-shaped

TABLE |
ABLATION STUDIES ON THE DEEPCRACK [11] AND CAMCRACK789
[20] DATASETS TO VALIDATE THE EFFECTIVENESS OF THE
DESIGNED LOSS FUNCTIONS

\ DeepCrack CamCrack789
LsegLpy Loy LFD LLD\F]—Score(%)T T0U(%)T|F1-Score(%)T IoU(%)T
v 81397  68.630 | 80233  66.992
v v 82285  69.902 | 81640  68.976
v 82454  70.146 | 82204  69.785
vV 82990 70925 | 82812  70.666
v vV Y v V| 84099 72561 | 83.025 70977
TABLE I

ABLATION STUDIES ON THE DEEPCRACK [11] AND CAMCRACK789
[20] DATASETS TO VALIDATE THE EFFECTIVENESS OF THE
DESIGNED RDLDC AND FAST-TRANSFORMER BLOCKS

DeepCrack CamCrack789
Methods FPS T (o1 Score(%) T ToU (%) TFT-Score(%) T ToU (%) T
Base® 376.60] 79587 66095 80363 67452
Fast-T (wo)  |443.83| 80.856  67.864 | 81559  68.860
RDLDC (wlo) [242.79| 82069  69.590 | 82416  70.091
Standard-T (w*) [26622| 81861 69292 | 82.195  69.772
LR-CrackNet (w)[324.40|  84.099 72561 | 83.025  70.977

segmentation framework. The quantitative results are pre-
sented in Table II. The first row corresponds to a baseline
U-Net [29] with base channels reduced from 64 to 32 for
higher processing efficiency. The second and third rows denote
variants without Fast-T and without RDLDC, respectively,
while the fourth integrates another Transformer variant [30].
These configurations allow us to isolate and evaluate the
individual contributions of Fast-T and RDLDC blocks to the
overall model performance. Results confirm their effectiveness
in efficiently capturing detailed hierarchical spatial and global
contextual information, thereby improving detection without
incurring computational overhead.

D. Comparison With Other SoTA Methods

To validate the superiority of the proposed LR-CrackNet in
terms of both detection performance and processing efficiency,
we compare it with eight public road crack detection-specific
algorithms (Deepcrackl18 [14], Deepcrackl9 [11], SCCD-
Net [31], Crack-Att [32], HrSegNet [22], CDLN [33],
LECSFormer [34], and CT-crackseg [26]) on the UDTIRI-
Crack [27], DeepCrack [11], and CamCrack789 [20] datasets.
On the one hand, quantitative and qualitative results regarding
detection performance are summarized in Tables III, IV,
and V and illustrated in Fig. 4. As shown in the results, LR-
CrackNet consistently achieves the best detection performance
across all three datasets. For instance, on the UDTIRI-Crack
dataset, it reaches an Fl-score of 71.419%, surpassing the
second-best method by 0.807%. Similar performance gains are
observed on the other two datasets, validating the robustness
of LR-CrackNet under diverse road conditions.

Table VI reports model parameters and processing effi-
ciency of LR-CrackNet and other methods on an NVIDIA
RTX3090 and a 32GB AGX Orin using 320 x 320 inputs.
LR-CrackNet attains the highest FPS on the RTX3090 and
ranks second on the AGX Orin, slightly behind HrSegNet, yet
surpassing others. Given its markedly better detection accuracy
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Input Ground truth  Deepcrack18  Deepcrack19 SCCDNet

Crack-Att

HrSegNet CDLN LECSFormer  CT-crackseg Ours

Fig. 4. Comparison results on the (a) UDTIRI-Crack [27], (b) Deepcrack [11], and (c) CamCrack789 [20] datasets.

TABLE IlI
QUANTITATIVE EXPERIMENTAL RESULTS OF DETECTION
PERFORMANCE ON THE UDTIRI-CRACK DATASET [27]

TABLE V
QUANTITATIVE EXPERIMENTAL RESULTS OF PIXEL-WISE CRACK
DETECTION PERFORMANCE ON THE CAMCRACK789 DATASET [20]

Methods ‘ F1-Score (%)1 ToU (%)t AloU (%)t Methods ‘ F1-Score (%)t ToU (%)t AloU (%)t
Deepcrack18 [14] 65.756 48.982 73.708 Deepcrack18 [14] 76.935 62.515 80.479
Deepcrack19 [11] 64.448 47.544 72.956 Deepcrack19 [11] 80.991 68.054 83.347

SCCDNet [31] 64.189 47.263 72.797 SCCDNet [31] 70.921 54.944 76.042
Crack-Att [32] 67.598 51.055 74.710 Crack-Att [32] 74.949 59.935 79.007
HrSegNet [22] 66.770 50.117 74.281 HrSegNet [22] 80.673 67.608 83.125
CDLN [33] 67.522 50.968 74.456 CDLN [33] 81.632 68.964 83.718
LECSFormer [34] 69.712 53.506 76.025 LECSFormer [34] 80.177 66.913 82.703
CT-crackseg [26] 70.612 54.573 76.574 CT-crackseg [26] 79.569 66.070 82.334
ours ‘ 71.419 55.545 77.060 ours ‘ 83.025 70.977 84.865
TABLE VI
TABLE IV QUANTITATIVE EXPERIMENTAL RESULTS IN TERMS OF MODEL

QUANTITATIVE EXPERIMENTAL RESULTS OF PIXEL-WISE CRACK
DETECTION PERFORMANCE ON THE DEEPCRACK DATASET [11]

PARAMETERS AND PROCESSING EFFICIENCY

Methods Parameters (M)] FPS (on FPS (on AGX
Methods | Fl-Score (%)t IoU (%)t AloU (%)t RTX3090)t Orin)t
Deepcrack18 [14] 78.149 64.135 81.219 Deepcrack18 [14] 30.905 43.935 2.762
Deepcrack19 [11] 81.276 68.458 83.468 Deepcrack19 [11] 14.720 276.695 27.030
SCCDNet [31] 76.164 61.504 79.590 SCCDNet [31] 31.705 113.317 9.365
Crack-Att [32] 78.191 64.191 81.210 Crack-Att [32] 45.804 58.257 5.847
HrSegNet [22] 81.453 68.709 83.598 HrSegNet [22] 9.641 300.15 51.726
CDLN [33] 82.242 69.839 84.087 CDLN [33] 19.151 45.934 13.857
LECSFormer [34] 82.389 70.052 84.268 LECSFormer [34] 16.528 65.460 12.062
CT-crackseg [26] 80.825 67.821 83.158 CT-crackseg [26] 22.882 24.926 2.561
ours | 84.099 72.561 85.622 ours \ 3.856 324.40 46.419

than HrSegNet, LR-CrackNet remains highly competitive
overall. The minor slowdown on AGX Orin is mainly due to
the computational cost of attention modules, which enhance
accuracy but are not yet optimized for edge devices. Future
work will involve hardware-friendly designs and pruning to
further cut latency. Combined with its accuracy and compact-
ness, LR-CrackNet offers a strong balance of performance and

efficiency, making it well-suited for real-time autonomous road
inspection.

V. CONCLUSION
Reliable road crack detection plays a vital role in ensuring
road safety and enabling timely infrastructure maintenance.
Despite advances in deep learning, current road crack detection

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 26,2025 at 08:20:02 UTC from IEEE Xplore. Restrictions apply.



38278

IEEE SENSORS JOURNAL, VOL. 25, NO. 20, 15 OCTOBER 2025

methods still struggle to balance detection performance, model
complexity, and processing speed. In this article, we pro-
pose LR-CrackNet, a lightweight, robust network adopting a
teacher—student architecture: the teacher exploits both images
and boundary information self-derived from annotations,
while the student uses only images. Knowledge distillation
is realized via a shared U-shaped segmentation framework
incorporating RDLDC blocks and a Fast-Transformer block
to capture detailed hierarchical spatial details and global
long-range contextual information efficiently. An attention-
enhanced discriminator further enforces global consistency and
provides local feedback to enhance detection performance.
Extensive experiments on three public datasets demonstrate
that LR-CrackNet achieves superior performance with fewer
parameters and higher efficiency than publicly available meth-
ods. Future work will focus on building more diverse datasets
and exploring two-stage frameworks to further improve detec-
tion reliability in complex real-world scenarios.
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