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Abstract— While millimeter-wave radars are widely used in
robotics and autonomous driving, extrinsic calibration with
other sensors remains challenging due to the sparsity and
uncertainty of radar point clouds. In this paper, we propose a
novel deep feature-matching-based online extrinsic calibration
approach for a 4D millimeter-wave radar and 3D LiDAR
system. We formulate the calibration problem as a cross-
modal point cloud registration task, initiating with keypoint-
level matching followed by dense matching refinement. Efficient
yet powerful neural networks are employed to extract prior
keypoint matches, which are then expanded to surrounding
regions, establishing dense point correspondences. Our ap-
proach effectively leverages the majority of the information
from millimeter-wave radar, mitigating the impact of radar
point cloud sparsity. We evaluate our approach on two datasets,
and experimental results demonstrate that it outperforms state-
of-the-art baseline methods and achieves an average improve-
ment of 66.96% in calibration success rate, while reducing
translational error and rotational error by 23.84% and 30.31%,
respectively. Our implementation will be made open-source at
https://github.com/nubot-nudt/RLCNet.

I. INTRODUCTION

Millimeter-wave (mmWave) radars and LiDAR are two
commonly employed sensors for online perception of mobile
robots or autonomous vehicles. mmWave radar demonstrates
superior stability in adverse conditions such as dust, rain, fog,
and snow, offering robust all-weather perception capabilities.
However, millimeter-wave radar has limited data resolution
leading to very sparse point clouds [1], [2]. In contrast,
LiDAR stands out for its exceptional three-dimensional
environmental reconstruction capabilities, providing high-
resolution spatial information for detailed scene represen-
tation. However, its performance can be affected by extreme
weather conditions. To overcome their individual limitations
and enhance overall perception accuracy and reliability, fus-
ing data from both sensors has become a prevalent technique
for autonomous mobile systems.
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Fig. 1: Our RLCNet establishes correspondences between point
clouds generated by a 4D millimeter-wave radar and a LiDAR
scanner online, enabling the estimation of a 6-DOF extrinsic
calibration between the two modalities.

In this work, we study the radar-LiDAR extrinsic calibra-
tion problem so that the radar and LiDAR data can be regis-
tered under a common reference frame for subsequent fusion.
Current calibration approaches for radar primarily rely on
corner reflectors [3], [4] or specialized calibration boards [5].
Heng proposes a target-free calibration method [6] which
builds a point cloud map of the environment and subse-
quently calibrates the pose of the mmWave radar relative to
this map. While these approaches have demonstrated promis-
ing outcomes, they are constrained to offline implementation.
However, during online operation, the sensor pose drift is
inevitable, thereby potentially undermining the accuracy of
the initial calibration results. Furthermore, in sensor systems
lacking hardware time synchronization, the asynchronous
nature of data acquisition across sensors can render static
extrinsic calibration parameters unreliable. Therefore, there
is a compelling need for an online calibration technique.

To the best of our knowledge, no online calibration method
has been specifically developed for 4D radar and LiDAR
systems. The main challenge in calibrating millimeter-wave
radar with other sensors lies in the extreme sparsity of
the radar point cloud, which poses significant difficulty for
conventional online extrinsic calibration methods. Existing
ego-motion-based methods [7], [8], [9] often require ac-
curate odometry estimation which is not always available
based on sparse radar data. Similarly, keypoints matching
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methods [10], [11], [12] for LiDAR point clouds calibration
also fails, since extracting keypoints from highly sparse
radar point cloud not only complicates the matching process
but also significantly constrains the calibration accuracy. To
tackle this challenge, we propose a deep dense feature-
matching-based calibration framework that directly estab-
lishes correspondences on the raw point clouds to enhance
the accuracy and robustness of calibration. The network
consists of two main components: first, a keypoint detection
and matching module is employed to extract keypoints from
radar and LiDAR point clouds and perform matching at
the keypoint level. Subsequently, leveraging neighborhood
consistency, we extend the matching relationships of the key-
points to their neighboring regions, ultimately constructing
dense point matches at the raw point cloud level ensuring
calibration robustness and accuracy.

The main contribution of this paper is a novel deep
feature-matching-based online calibration framework for
radar-LiDAR systems. We tackle the challenges of sparse
millimeter-wave radar point clouds by proposing a network
that progressively constructs dense matches from keypoint to
raw point cloud levels, enabling accurate calibration. Exten-
sive experiments demonstrate that our method outperforms
state-of-the-art baseline methods.

II. RELATED WORK
A. Target-Based Extrinsic Calibration

Given the inherent high noise and sparsity of mmWave
radar data, most calibration methods employ specialized
trihedral reflectors to ensure stable signals within radar
data [3], [4], [5], [13], [14]. Persi¢ et al. [13] achieves
6-degree-of-freedom (6DoF) extrinsic calibration between
radar and other sensors by incorporating specially designed
chessboard targets and leveraging two-step optimization pro-
cedure. Domhof et al. [5] utilize a combination of four-
circular-holes foam boards and a trihedral reflector, to ensure
simultaneous observation by diverse sensors. Wise et al. [15]
propose to use Apriltags and trihedral reflectors achieving
spatiotemporal calibration between cameras and radar.

B. Target-Free Extrinsic Calibration

The ego-motion-based approaches [7], [8], [9] exploiting
the constraints between the individual sensor motions can be
naturally implemented for the calibration of radar-LiDAR
system. Persic et al. [16] executed an unsupervised online
pairwise extrinsic calibration for 2D radars, cameras, and
LiDAR sensors by synchronizing the trajectories of moving
objects. This approach relies on priori knowledge of trans-
lational parameters, concentrating the estimation process on
the yaw angles between the radar-camera and radar-LiDAR
sensor pairs. Heng [6] introduced the first feature-based
calibration approach. It constructed a point cloud map of the
environment using LiDAR and subsequently calibrates the
radar relative to this map, thereby determining the extrinsic
parameters. An advantage of this method is that it does not
require overlapping field-of-view (FOV) between LiDAR and
radar; however, this approach can be only performed offline.

To date, no feature-macthing-based online calibration method
for radar-LiDAR system has been published.

Extensive research has been conducted on utilizing deep
learning to extract features across different sensor modalities
for online calibration. Existing works [10], [11], [12] adopt
supervised or unsupervised methods for extrinsic calibration
between LiDAR and cameras. These methods leverage neural
networks to learn the shared features and inter-modality cor-
relations, enabling data alignment across modalities. Scholler
et al. [17] employed end-to-end deep learning to estimate
the rotation matrix of extrinsic parameters, thereby aligning
vehicle detections from radar measurements with those in
camera images. While deep learning methods have demon-
strated their effectiveness in online calibration of sensors
such as cameras and LiDAR, their potential in mmWave
radar calibration remains largely unexplored.

Due to the inherent similarities between radar and LiDAR
point cloud data, point cloud registration methods [18], [19],
[20], [21], [22] have the potential to be utilized for the
calibration of radar-LiDAR system. However, the sparsity of
radar point clouds, combined with the presence of substantial
noise and ghost points, presents significant challenges.

III. OUR APPROACH

In this work, we delve into the problem of target-free
extrinsic calibration for a 4D mmWave radar and 3D LiDAR
system. The goal is to compute the 6-Degrees-of-Freedom
(6-DoF) extrinsic parameters between the two sensors. To
this end, we introduce a novel framework that model the
calibration task as a point matching task, and solve it in two
steps, as illustrated in Fig. 2. Firstly, we extract keypoints
from both the radar and LiDAR point clouds and establish
correspondences on keypoint level. Secondly, we leverage
neighborhood consistency and keypoint matches to construct
dense point correspondences directly within the raw point
clouds, thereby facilitating more precise calibration.

A. Data Preprocessing

The FOV of a typical 4D mmWave radar is less than
120°, meaning that at least two-thirds of the LiDAR data
is redundant. Aligning the radar data with such an excess
of information presents a significant challenge. Fortunately,
within the context of calibration tasks, there is minimal
fluctuations. Therefore, we assume that a preliminary esti-
mation of the yaw angle is already known (derived from the
preceding calibration iteration; for initial calibrations, this
can be readily approximated through manual assessment).
Utilizing the estimated yaw angle, we preserve only the
LiDAR point cloud that lies within the 180° frontal arc
aligned with the radar’s orientation. Furthermore, considering
the point cloud’s diminished density at extended ranges, we
restrict only those points from both sets of point clouds that
are within a distance of no more than 60 m. Finally, we
perform a downsampling of the two point clouds, employing
a voxel size of 0.3 m, to standardize the data as input for our
neural network.
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Fig. 2: Our proposed network architecture is used to estimate extrinsic calibration parameters between LiDAR and millimeter wave radar.
The inputs to the network are LiDAR point clouds and millimeter wave radar point clouds. The output of the network is the 6-DoF rigid
body transformation Tpred between the two sensors. The entire network is divided into Key Point Detection, Key Point Match Module

and Dense Point Matching Module.

B. Keypoint Detection

Our approach aims to first extract stable keypoints from
two point clouds and establish correspondences as an initial
guess for dense point matching. As a start point for stable
keypoint extraction, we exploit the KPEncoder [23] as the
backbone that hierarchically downsamples and encodes the
point cloud into the uniformly distributed nodes with descrip-
tors [75\]?] To enable contextual information aggregation
and exchange between the two point clouds, we follow 3D-
RoFormer [24] and map a point piQ with its feature hZQ in
the query point cloud Q and all the points in the source point
cloud S with a linear projection, given by:

= W1 h? + by,
kj = Wah$ + b, (1)
= W3 h$ + bs.
If Q, S are the same point cloud, Eq. (1) generates the feature

maps for self-attention operation, otherwise cross-attention.
It leverages an MLP and maps the position p, € R?’ into the

rotary embedding ©@; = [01,02,--- ,04/5] € R%, and then
transform it to a rotation matrix as:

cosfy —sinfy - 0 0
sin 01 cos 01 e 0 0
Re, = : : : : )
0 0 cos 0% —sin 9%
0 0 sin 0% cos 9%

We apply Re, and Re, to query g, and key k; respec-
tively in self-attention and obtain the rotary self-attention as:

o = softmaxj((R@iqi)TR@j k;), 3)
~ S|
hi =Y alw;. 4)
j=1
Consequently, we can further derive Eq. (3) as:
off; = softmax;(q; RS, Re,k;),
= SOftman(q;rR@j_@ikj), (5)

where the relative information ®; — ©; is naturally incor-
porated into the calculation of output h. We denote the
enhanced feature by 3D-RoFormer as H e RIPIxd,

After 3D-RoFormer, we extract enhanced features that
fuses contextual information and geometric structure. Sub-
sequently, we deploy a suite of Multi-Layer Perceptrons
(MLPs) to estimate the geometric offset. This process maps
the uniformly sampled nodes to the proposal keypoints, i.e.,
[AP, AF] = Vote(F), S = P+ AP, and H = F + AF. By
adding offsets, multiple proposals emerge clustered within
salient areas of the point cloud. Finally, we randomly select
a single proposal from each cluster as the final keypoints.

C. Dense Point Matching

Keypoint matching. Given that the keypoints have just
been shifted and filtered by random selecting, we input these
keypomts to another 3D-RoFormer to update the features as
H. A Gaussian correlation matrix C € R‘S %185 is then
calculated to model the similarity between normalized HA
and HE with ¢; ; = exp(—||hA — B]B||2)

We follow Qin et al. [25] to perform a dual-normalization
to suppress ambiguous matches, given by:

L Ci,j Ci,j
Cii = A - . Z\SBI ) (6)
k=1 Ci.k k=1 Ck.j
The largest N, entries are chosen as the keypoint correspon-
dences.

Dense point matching. A matched keypoint pair indicates
similarity in their respective neighborhoods, suggesting the
potential to find additional point matches within these re-
gions. Therefore, we first determine the region belonging to
each keypoint. For each keypoint §;, we use a point-to-node
strategy [26] to assign each point to its nearest keypoint by:

Gi = {p € Pli = argmin(||p — §|2), $; € S}, (7)
J

where G, is a patch of neighbor points of ;.

We leverage the KPDecoder [23] to recover point level
descriptors F. For each keypoint correspondence ( )
we have its corresponding point patch match (g Q ).
Subsequently, we then compute a match score matrix O =
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F2 (ng)T / Vid using point-level descriptors. A “dustbin”
row and column filled with a learnable parameter o € R are
further appended for O, to handle non-matching points. The
Sinkhorn algorithm is then used to solve the soft assignment
matrix Z' € ROMi+1)x(Ni+1)  Given the inherent disparity
in data volume between LiDAR and millimeter-wave radar
point clouds, we adopt a row-wise maximization strategy to
allocate each radar point to a corresponding LiDAR point or
to a “dustbin as our final assignment C’. A point is assigned
to a “dustbin”, it is classified as a non-match.

D. Loss Function

The loss function is composed of three parts: the keypoint
detection loss Ls, the keypoint match loss L., the dense point
matching loss L¢. The final loss is the sum of these three
components: L = Ly + L. + Lg.

Keypoint detection loss. An ideal keypoint should exhibit
stability across both the radar and LiDAR point clouds,we,
therefore, employ a Chamfer loss to minimize the Euclidean
distance between the matched keypoints, calculated as:

4 1S5
Ls = min HS — ||2 + mln Hs — sz (®)
; sBeS % lzl s €S !

Keypoint matching loss. We follow [25] and use overlap-
aware circle loss to guide network to match keypoints with
relatively high overlap, as given by:

A 1 N (df At
LD DIESC
ghAca gBect

Z eﬁf,k(ﬁ‘*df)},
QEEE;

(C)]
where 6 is the positive patch sharing at least 10% overlap
with g_l and ;" is the negative patch that do not overlap with
GA, dl = ||ﬁf‘ — flf 2, A refers to the overlap ratio between
G/ and GB, and B = y(d? — At) and Bip = Y(df —
A7) represent the positive and negative weights. The hyper-
parameters setting is followed by convention: AT = 0.1 and
A~ = 1.4. The overall coarse match loss is the average of
overlap-aware circle loss on A and B, i.e., L. = (LA+LB)/2

Dense point matching loss. We use a gap loss [20] on
the soft assignment matrix 7', calculated as:

N1
Zlog D> ((=rh+ Zi + )4 1))
= n=1
Ni i+1
+f210g > ((—ch +Zp +0)s +10), (10)
n=1 m=1
where (-); = maz(-,0), ri, = YNt zi oM., refers

to the soft assignment value for the true match of m-th
point in g;‘i, and ¢!, = Zi\f ﬁl Zi M ., Tefers to the soft
assignment value for the true match of n-th point in gj;{,,
and M’ € {0, 1}(M:AD)X(Nit+1) refers to the ground truth
correspondences with a match threshold 7. The final dense
point matching loss is the average over all the matched patch

Qe 1 M
pairs: L = griy ZL:1 Lt

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

Ground truth calibration precision and sensor data quality
are crucial for data-driven methods. However, there are
few open-access datasets that encompass high-quality 4D
millimeter wave radar point cloud data. Among the available
resources, the VoD dataset [27] and the MSC RAD4R dataset
[28] are two datasets that meet our requirements.

The VoD dataset has multi-sensor data from an HDL-
64 LiDAR and FRGen2l1 radar in urban areas. The MSC
RADA4R dataset includes data from urban and rural environ-
ments, collected by a 128-channel LiDAR and Eagle radar,
making it a good choice for evaluating online calibration
methods. In experiments, we split the VoD dataset into 6000
frames for training, 100 for validation, and 2582 for testing.
For the MSC dataset, we select 16,982 frames from six urban
and four rural sequences for training and 2941 frames from
two urban and three rural sequences for testing.

We adopt data augmentation as in [11], [29], applying
random translations within 5 meters in the x, y, and z
directions, as well as rotations within 10 ° in roll, pitch, and
yaw to all LiDAR point cloud data. This range is set based
on estimating and analyzing installation and operational
sensor errors. Data augmentation within this range helps the
model adapt to real world sensor distributions. This approach
introduces varying degrees of random extrinsic parameters to
both the training and testing sets, facilitating comprehensive
training and evaluation. Our model is trained on a single
NVIDIA RTX 3060 GPU with a batch size of 1. The total
training time is about 30 hours. The runtime for inference is
172 ms per scan, enabling online keyframe calibration.

B. Metrics

We use these metrics for calibration performance eval-
uation: i) Relative Translational Error (RTE): Measuring
Euclidean distance between the estimated and true translation
vectors, and errors in each of the X, y, and z axes, denoted as
X, Y, and Z. ii) Relative Rotational Error (RRE): Calculating
geodesic distance between the estimated and ground truth
rotation matrices, and angular discrepancies in Euler angles,
denoted as Rx, Ry, and Rz. iii) Registration Recall (RR):
Calculating the fraction of estimation whose RRE and RTE
are below certain thresholds, e.g., 5 °and 2 m.

C. Cross-Modal Calibration Performance

To the best of our knowledge, no online calibration
method specifically designed for radar-LiDAR systems has
been reported. Existing motion-based calibration [7], [8], [9]
requires odometry information from both sensors. However,
existing radar odometry methods fail to produce satisfac-
tory results in our experiments. Consequently, motion-based
techniques have not been included in our comparisons. We
compare our approach with baselines from the most closely
related task in the domain: point cloud registration. Specifi-
cally, we benchmark our results against three representative
methods: i) the recent SOTA registration method, LCR-
Net [22], and ii) the most widely employed traditional
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Fig. 3: Qualitative comparison of single-shot calibration using our method and LCR-Net. While LCR-Net exhibiting recognizable error,

our method precisely aligning the two point clouds.

TABLE I: Calibration Performance on the MSC Dataset. The best results are highlighted in bold.

Seq. 1 Seq. 3

Seq. 10 Seq. 12

ICP TEASER LCR-Net RLCNet ICP TEASER LCR-Net RLCNet ICP TEASER LCR-Net RLCNet ICP TEASER LCR-Net RLCNet

RR(%)t 4.18  0.09 61.54 87.56 3.67 0.380 6259 8947 881 1.02 83.39  96.27 526 0.380 65.04  99.25
RTE(m){ 0.940 0.661 0.347  0.298 1.119 1.496 0.364  0.307 0.603 1.508 0210  0.179 0.915 1.100 0.283  0.252
RRE(°)| 1.705 2.954 1.818  1.492 1.570 3.020 1.677  1.253 1.524 2227 1.089  0.895 2.696 3.986 1.592  1.008
X(m)l 0.188 0.345 0.173  0.147 0.283 0.545 0.168  0.149 0.088 0.828 0.093  0.095 0.364 0.286 0.147  0.138
Y(m)| 0251 0277 0.159  0.149 0.303 0.768 0.165  0.129 0.128 0.554 0.077  0.066 0.288 0.152 0.114  0.079
Z(m)]  0.829 0.491 0.180  0.147 0.939 0.894 0.204  0.178 0.561 0.746 0.135  0.105 0.562 1.051 0.152  0.149
Rx(°), 0.565 0.826 0.558  0.502 0.547 2.033 0.631  0.480 0.596 1.902 0452 0375 1.320 0.539 0.650 0.431
Ry(°), 0.868 0.673 0937 0.752 1.082 0.943 0.857  0.725 0.770 0.780 0.578  0.490 1.028 3.916 0.930  0.681
Rz(°)] 0980 2.771 1.159  0.994 0.615 1.586 1.048  0.705 0.871 0.617 0.584  0.474 1.517 0.549 0.850  0.533
TABLE II: Calibration Performance on the VoD Dataset. The best results are highlighted in bold.

RR(%)t  RTEm){  RRE(®)l Xml Y] Zm)] Rx(°}l  Ry(®)l  Rz(®){

ICP 1.92 1.047 2.606 0.704 0.509 0.289 1.376 1.213 1.241

TEASER 1.74 0.934 3.407 0.531 0.448 0.354 1.980 1.743 1.067

LCR-Net 37.95 0.417 1.899 0.174 0.175 0.257 1.242 0.912 0.699

RLCNet (ours) 72.36 0.295 1.266 0.140 0.120 0.171 0.867 0.541 0.469

method, ICP [18], and iii) the recent SOTA traditional
method, TEASER [21]. We retrain LCR-Net on the same
dataset for a fair comparison. For TEASER, to balance
performance and runtime, we employ the top 10 nearest
neighbors as an initial estimation of correspondences.

The experimental results on the MSC-RAD4D dataset [28]
are shown in Tab. I, our approach achieved an RR exceeding
85% across all sequences. The total RR of the dataset reached
90.45%, with average translational errors of 0.279 m (x:

0.156 m, y: 0.120 m, z: 0.138 m) and average angular errors
of 1.260° (Roll: 0.462°, Pitch: 0.690°, Yaw: 0.765°). The
experimental results on the VoD dataset are presented in
Tab. II, our approach continues to demonstrate a significant
advantage over the benchmark methods. Tradition methods,
i.e., ICP and TEASER, struggle to produce satisfactory
results due to the extremely sparse radar data and presence of
noise points. The underwhelming performance of TEASER
attributes to the absence of good initial correspondences.
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Fig. 4: Comparison of calibration error distribution on Seq. 12 of
the MSC-RAD4R dataset.

TABLE III: Ablation study.

RR(%)t RTE(m)] RRE(°)}

RLCNetlencoder41(ours) 90.45 0.279 1.260
RLCNetlencoder40 61.82 0.306 1.446
RLCNet2encoder4 1 83.31 0.296 1.250

We evaluate the distribution of calibration errors across all
frames. As shown in Fig. 4, our method is highly tolerant of
translation errors, achieving excellent results. We visualize
the calibration results as in Fig. 3. The initial parameters of
the two point clouds exhibit substantial discrepancies in the
translation and rotation matrices, and the radar point cloud
is notably sparser. However, our method accurately predicts
the extrinsic calibration parameters despite these challenges.

D. Ablation Studies

We perform ablation studies in Tab. III to show the
effectiveness of the design. Initially, we study the keypoint
extraction. As shown, using a single shared encoder, de-
noted as RLCNetlencoder41, performs better than using two
distinct encoders for two point clouds, denoted as RLC-
Net2encoder41. This is because mmWave radar and LiDAR
point clouds are fundamentally geometric representations of
the environment; So, a unified encoder can be more effective
to capture common geometric and semantic features in both
types of point clouds.

Subsequently, we investigate the dense point matching.
Benefiting from the flexibility of our network architecture,
we can match at the top layer, denoted as RLCNetlencoder40
or the second layer, denoted as RLCNetlencoder41, i.e., at
the raw point cloud or at the downsampled point cloud. The
results show that downsampled matching performs better.
This may be due to the fact that, at the top layer, the ex-
cessive number of LiDAR point clouds introduces redundant
information, which complicates the matching process.

E. Potential Downstream Applications

As shown in Fig. 5, we visualize the projected radar point
cloud onto the LiDAR map with our estimated extrinsic
parameters. The precise alignment between the two point

Fig. 5: Radar points (red) projected on LiDAR point map (gray)
using our estimated extrinsic parameters.

.

(a) ICP

(b) LCR-Net (c) Ours

(d) Groundtruth

Fig. 6: Accumulated radar point map using LiDAR pose and our
estimated extrinsic parameters.

clouds achieved by our calibration demonstrates its potential
for downstream cross-modal localization. Additionally, for a
test sequence, we map radar point cloud. We accumulate
radar point cloud using the LiDAR pose and estimated
extrinsic parameters, as illustrated in Fig. 6. The radar map
stitched using the extrinsic parameters estimated by our
network and corresponding LiDAR odometry poses is the
closest to the ground-truth-based map. This highlights the
consistent accuracy of our online calibration and its potential
for multi-sensor fused odometry.

V. CONCLUSION

In this work, we introduce RLCNet, a novel approach for
feature-matching-based online extrinsic calibration of radar-
LiDAR systems. Our approach first extracts stable keypoints
for the purpose of matching priors. Given the sparsity inher-
ent in mmWave radar data, utilizing sparser keypoint matches
poses a significant constraint on the reliability and precision
of calibration. To overcome this limitation, we leverage
neighborhood consistency to seek denser point matches from
the vicinity of keypoint matches, thereby facilitating a more
robust and accurate calibration. Experimental results demon-
strate that our method outperforms the baselines in terms of
calibration recall and precision across two datasets.
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