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Abstract— Correspondence matching plays a crucial role in
numerous robotics applications. In comparison to conventional
hand-crafted methods and recent data-driven approaches, there
is significant interest in plug-and-play algorithms that make full
use of pre-trained backbone networks for multi-scale feature
extraction and leverage hierarchical refinement strategies to
generate matched correspondences. The primary focus of this
paper is to address the limitations of deep feature matching
(DFM), a state-of-the-art (SoTA) plug-and-play correspon-
dence matching approach. First, we eliminate the pre-defined
threshold employed in the hierarchical refinement process of
DFM by leveraging a more flexible nearest neighbor search
strategy, thereby preventing the exclusion of repetitive yet
valid matches during the early stages. Our second technical
contribution is the integration of a patch descriptor, which
extends the applicability of DFM to accommodate a wide range
of backbone networks pre-trained across diverse computer
vision tasks, including image classification, semantic segmen-
tation, and stereo matching. Taking into account the practical
applicability of our method in real-world robotics applications,
we also propose a novel patch descriptor distillation strategy to
further reduce the computational complexity of correspondence
matching. Extensive experiments conducted on three public
datasets demonstrate the superior performance of our proposed
method. Specifically, it achieves an overall performance in terms
of mean matching accuracy of 0.68, 0.92, and 0.95 with respect
to the tolerances of 1, 3, and 5 pixels, respectively, on the
HPatches dataset, outperforming all other SoTA algorithms.
Our source code, demo video, and supplement are publicly
available at mias.group/GCM.

I. INTRODUCTION

Correspondence matching between images is crucial for
a wide range of computer vision and robotics applications,
e.g., simultaneous localization and mapping [1]-[3], 3D
geometry reconstruction [4]-[6], and stereo matching [7]—
[10]. Conventional hand-crafted approaches extract keypoints
using human-designed local feature detectors and descriptors,
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Fig. 1. Comparison between DFM and our proposed GCM on the
Hpatches dataset. Our approach produces more correspondences in the
regions with low texture or repetitive patterns.

such as the scale-invariant feature transform (SIFT) [11]
and speeded up robust features (SURF) [12]. Correspon-
dence pairs are then determined using the nearest neighbor
search (NNS) algorithm [13]. With the recent advances in
deep learning, data-driven approaches [14]-[20] have demon-
strated compelling results.

Conventional hand-crafted approaches generally leverage
a sequential pipeline for keypoint detection, description,
and matching [21], [22]. Their overall performance is often
determined by the weakest component within this pipeline,
akin to the “barrel effect” principle. Moreover, errors in
the earlier stages can accumulate and propagate to the later
stages, making it tricky to improve the overall performance
[23]. While data-driven approaches have significantly outper-
formed hand-crafted methods, detector-based methods [14]—
[17] may still struggle in texture-less regions, and detector-
free approaches could face information loss due to manually
selected scales [18]-[20]. Additionally, most data-driven
approaches require a large amount of well-annotated data for
model training, often resulting in unsatisfactory performance
when applied to new scenarios [24].

To address these limitations, deep feature matching (DFM)
[25], a plug-and-play approach built upon a hierarchical
matching refinement paradigm is proposed. DFM utilizes a
VGG [26] model pre-trained on the ImageNet [27] database
to extract multi-scale features, with no need for additional
training with well-annotated data. Furthermore, DFM lever-
ages a coarse-to-fine strategy in conjunction with the NNS
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algorithm to perform hierarchical feature matching from the
deepest layers to the shallowest ones. DFM significantly
improves accuracy and robustness compared to conventional
hand-crafted methods, outperforming even some approaches
trained with correspondences [24].

Nevertheless, DFM has three significant limitations. The
most fatal drawback is its high demand on the backbone
network, limiting compatibility to those capable of provid-
ing feature maps with the same size as the input image,
such as VGG. Another drawback is the lack of extensive
experimental evaluation of DFM in various computer vision
and robotics tasks, except for image classification. This raises
questions about its performance when using different back-
bone networks, especially those trained for dense correspon-
dence matching, such as [28]-[30]. Finally, the hierarchical
refinement strategy employed in DFM has the potential
to propagate errors from deeper layers to shallower ones,
resulting in lower density and quality of correspondence
matching, as shown in Fig. 1.

To address the challenges mentioned above, this paper
introduces Generalized Correspondence Matching (GCM)
based on flexible hierarchical refinement and patch descriptor
distillation. First, we omit the pre-defined threshold used in
the hierarchical refinement process of DFM by leveraging a
more flexible NNS strategy, thereby preventing the exclusion
of repetitive yet valid matches in early stages. Furthermore,
we expand the applicability of DFM to accommodate various
types of backbones, pre-trained across diverse computer
vision tasks, including image classification [26], [31]-[35],
semantic segmentation [36]-[39], and stereo matching [28]-
[30]. This is accomplished by incorporating a patch de-
scriptor to function as the highest-resolution feature maps
(with the same resolution as the input image) in DFM.
Additionally, we propose a novel strategy for patch descriptor
distillation, which further enhances the overall efficiency of
correspondence matching. What surprises us is that several
backbones demonstrate improved performance when the
patch descriptor is distilled. Extensive experiments conducted
on the HPatches dataset [40] demonstrate the superior mean
matching accuracy (MMA) achieved by GCM. Moreover, as
illustrated in Fig. 1, GCM is capable of producing denser
and more accurate matched correspondences, particularly in
repetitive or low-texture areas when compared to DFM.

II. RELATED WORK
A. Correspondence Matching

Early approaches, as exemplified by SIFT [11], typically
employ hand-crafted local visual features, e.g., gradients,
angles, and blobs, to detect distinctive interest points and
generate descriptors. Correspondence pairs are subsequently
determined via NNS [24]. However, these algorithms have
limited adaptability to diverse and complex datasets owing to
their reliance on manually designed features [16]. Moreover,
they tend to be highly sensitive to variations in lighting,
scale, and viewpoint, which constrains their robustness in
real-world scenarios [14]. In addition, they often require
significant domain expertise for feature design and may

struggle to generalize effectively across different tasks or
domains.

Over the last half-decade, data-driven methods [15]-[17]
have demonstrated superior performance compared to con-
ventional hand-crafted approaches. Among them, detector-
based algorithms have remained the dominant choice for
correspondence matching. As an example, SuperPoint [14]
leverages homographic adaptation in conjunction with Mag-
icPoint [41] to enhance detector performance and generate
pseudo ground-truth interest points for unlabeled images
in a self-supervised fashion. Another data-driven approach,
repeatable and reliable detector and descriptor (R2D2) [16],
is built upon a trainable convolutional neural network (CNN).
R2D2 enhances the descriptor quality by placing a strong
emphasis on the reliability of feature points. This is achieved
in conjunction with a trainable CNN designed for both fea-
ture description and detection, known as D2-Net [15]. Such
improvements greatly advance R2D2’s feature description
capabilities. In contrast, DFM [25], which relies on VGG-
19 model, does not offer such precision in the description.
Additionally, SuperGlue [17] leverages a graph neural net-
work (GNN) equipped with an attention mechanism and a
differentiable Sinkhorn algorithm [42] to compute matches
between two sets of detected features and their correspond-
ing descriptor vectors. SuperGlue achieves notably superior
performance when compared to the NNS methods.

Other approaches, such as neighborhood consensus net-
works (NCNet) designed for image correspondence esti-
mation [18] forgo the feature detection phase and instead
directly match points distributed across a dense grid rather
than sparse locations. NCNet constructs a 4D cost vol-
ume with neighborhood consensus to enumerate all possible
matches between images. In contrast, efficient neighborhood
consensus networks via submanifold sparse convolutions
(SparseNCNet) [19] employs a more condensed form of
the correlation tensor, storing a subset and substituting the
dense 4D convolution with a sparser convolution technique
to improve correspondence matching efficiency. Epipolar-
guided pixel-level correspondences (Patch2pix) [43] utilizes
a pre-trained backbone to extract patch-level matches and
employs a two-stage regressor to refine these matches to
pixel-level precision. On the other hand, detector-free local
feature matching with Transformers (LoFTR) [20] achieves
a high level of robustness but can be slower due to the large
number of processes it involves. Although efficiency can be
improved by reducing the resolution of the input image, this
may affect matching accuracy to some extent. In this paper,
our GCM is built upon the foundation of DFM. Our primary
focus is to tackle the limitations of DFM, particularly the
high demand for feature maps and the necessity of a prede-
fined threshold for hierarchical refinement.

B. Knowledge Distillation

Knowledge distillation is a commonly used technique for
model compression, initially introduced for image classifica-
tion. Unlike pruning and quantization techniques [44] used in
model compression, knowledge distillation techniques focus

10291

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on August 21,2024 at 06:54:32 UTC from IEEE Xplore. Restrictions apply.



Warping

Patch Descriptor
0
4 3

1

Feature

1A/ lonl ol
sy
Y
=
2
o
=
|w)
N | Q|
<3
5
g :
J o
Flexible
Hierarchical
Refinement

Extractor

J

Correspondence Matching Result

Feature

Feature =
Extractor B 5 2 E =
2 88| &
. OZ| £58
) s B =
Z 5 —» E£5 £
- S = =
L wn Sz 5
R
5 O sH
Feature [, z =
Extractor
A
Fig. 2.

on training a smaller, more lightweight model [45]. This is
achieved by exploiting supervised information from larger,
high-performance models, ultimately reducing both time and
space complexity. Due to its success across various tasks,
knowledge distillation is regarded as an effective multi-
tasking approach, applicable to classification [46], semantic
segmentation [47], and object detection [48], [49]. In this
paper, we utilize the knowledge distillation technique to
further reduce the complexity of the patch descriptor.

III. METHODOLOGY
A. Architecture Overview

The architecture of our proposed GCM is shown in Fig. 2.
GCM follows a two-step correspondence matching strategy,
similar to DFM [25]. Initially, we employ a pre-trained
backbone network as the deep feature extractor to obtain
the feature maps F = {F1, ..., Fy.}. Here, F| € Rt %57 XCi
represents the [-th layer of feature maps, with H and W
denoting the height and width of the input RGB image
I ¢ RHXWX3_ regpectively. Next, we perform NNS on
the last layers of feature maps, denoted as F,f and FkB )
to obtain coarse matches M,?’B. Here, the superscripts A
and B represent two images of I and I®. Based on these
matches, we estimate the homography matrix H, which is
further utilized to generate a warped image I¢ from IZ.

In the second step, we perform feature extraction fol-
lowed by a flexible hierarchical refinement (FHR) mod-
ule, which will be detailed in Section III-D, to obtain the
matched correspondences. In specific, we construct hierarchi-
cal feature map layers {F{}, F5', ..., FA, F{'} for I, and
{FB,Fp,...,FP, F¥} for I”. Note that, Fy € REXW>Co
is obtained through a patch descriptor described in Section
III-C, which provides feature maps with the same size as the
original images. The FHR module operates in a coarse-to-
fine manner, processing from the deepest layer F}, to shallow
layers down to F7, and finally Fj, where we obtain the final
matches between I and the warped image I¢. Later, taking
advantage of the estimated H in the first step, we can trace
back to the matched correspondences between I and the
original image of I5.

Our method generalizes the baseline DFM approach and is
compatible with various types of backbone networks. These
networks can be pre-trained for a diverse range of computer
vision tasks, regardless of whether they can produce feature
maps with the same resolution as the original images.

>

Extractor .
Coarse to Fine

- J

The architecture of our proposed GCM.

B. Nearest Neighbor Search

Since the dense NNS utilized in DFM is a local matching
approach that necessitates a manually defined threshold and
tends to discard correct matches in cases of repetitiveness,
we adopt a flexible, parameter-free NNS strategy.

Given the feature maps F'4 and F'Z extracted from images
I and IB, we identify potential matches by determining the
nearest neighbors based on the feature distance between p*
and pB (with f4 and f? denoting the features at the point
p? and pf in F4 and FB, respectively):

d(pAapB) = lqu(fA’fB)’ (1)
where ¢(-, ) represents the cosine similarity as follows:
4 B fA . fB
, = 2
AR FZI N2 ”

For a specific point p# within the feature map F4, it is
matched to p? if the distance to p? is minimal. A match
(p?,pP) is confirmed only if it is mutual, meaning that p
and p® are recognized as a matched pair only if p? is also
matched with p?.

C. Patch Descriptor Distillation

To reduce time and space complexity, we develop an addi-
tional distilled patch descriptor as a more lightweight feature
description network alternative. Given that descriptors of
R2D2 [16] are sourced from an L2-normalized feature map,
our strategy is to train the final layer of the student model’s
backbone using the final feature layer of the teacher model’s
backbone. As shown in Fig. 4, the student model reduces
the number of intermediate layers and directly assimilates the
final feature map from the teacher model. X7 ¢ RH*xWx128
denotes the output of the last layer of the teacher model
backbone network, and X S € REXWX128 denotes the last
layer output of the student model backbone network. The
loss function is defined as follows:

1
£=W > (- e(XT, X)),
(i,7)€P

where the point set P contains all points in the image,
represented by coordinates (4, j) for each pixel. The function
¢ is defined in Equation (2). This lightweight patch descrip-
tor enables the faster generation of Fo € RHXWx128 for
facilitating flexible hierarchical refinement.

3)
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Fig. 3. An illustration of one iteration within the hierarchical
refinement module.

D. Flexible Hierarchical Refinement

The flexible hierarchical refinement (FHR) module con-
sists of multiple iterations, with a single iteration illustrated
in Fig. 3. Given the matched features M4 in the I-th layer,
where every match (pi,pC) € MM is associated with
feature (f7, f€), this module returns matched correspon-
dences Mﬁf in the (I — 1)-th layer. During this step, it
allows the matched features in F/* and FC to identify the
corresponding sub-region pairs in Fj*; and F, . In specific,
every point in Fj is mapped to F;_; and corresponds to a
2 x 2 patch on Fj_;. By applying NNS to these sub-regions,
matched correspondences ./\/llA_’1 between Fl‘i , and Fﬁl
can be obtained.

There are (k 4 1) iterations in total, consistent with the
number of hierarchical feature layers from Fj to Fj. As
for the initial input of FHR, we employ the NNS on the
k-th layer’s Fj, from the two images to obtain an initial
correspondence. Subsequently, we map these points to Fj,_1
and establish paired sub-regions between I and I®. Using
this correspondence, we employ the NNS to establish refined
correspondences within each group of patches. This process
is iteratively applied until the first layer of F} is reached,
resulting in correspondences at half size of the input images.
Finally, we project the matched points onto the descriptor
layer Fy and perform correspondence matching at this layer
using NNS between every paired patch associated with
I and I€. Due to potential accumulated errors from the
previous stages, we introduce a ratio test as in [11], [15] at
the final iteration to filter out inferior matches.

It is worth noting that this hierarchical refinement
paradigm is adaptable to a wide range of backbone networks.

IV. EXPERIMENTS
A. Datasets and Evaluation Protocol

Here is a summary of the datasets and evaluation setups
used in our experiments:

@ HPatches: We conduct experiments on the HPatches
dataset, utilizing mean matching accuracy (MMA) and ho-
mography estimation accuracy as metrics. For both image
matching and homography estimation, we follow the evalu-
ation setup detailed in [25].

@ MegaDepth: We evaluate the outdoor pose estimation
accuracy of our proposed method on the MegaDepth dataset
[50]. We quantify the pose error by computing the area
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Fig. 4. Our proposed patch descriptor distillation strategy. We employ
the R2D2 backbone as the teacher descriptor to generate a more lightweight
student descriptor. BN refers to batch normalization.

under the receiver operating characteristic (AUC), following
the setup detailed in [51] and [20]. Additionally, we also
compute match precision following the setup in [17].

® ScanNet: We evaluate the indoor pose estimation ac-
curacy on the ScanNet dataset [52]. Please refer to [17] for
detailed setups.

B. Implementation Details

In our experiments, we employ ResNetl8, pre-trained on
the ImageNet dataset, as the default deep feature extractor.
For the feature description, we use the patch descriptor
from the distilled R2D2. We only incorporate a ratio test
at the descriptor layer to correct errors from previous stages.
Similar to the setup used in [25], two ratio tests (thresholds:
0.95 and 0.60) are applied. Our model is trained on the same
datasets used to train R2D2. During the training process,
we utilize the Adam optimizer with an initial learning rate
of 1 x 107* and a batch size of 2. The training process
converges after 10 epochs on an NVIDIA GTX1650 GPU.
The student model contains 292K parameters, compared
to the teacher model, which has 486K parameters. This
reduction in parameters demonstrates the efficiency gains
achieved through our patch descriptor distillation strategy.

We incorporate a patch descriptor that allows the proposed
method to be compatible with the most popular backbone
networks. It is worth noting that our method is not directly
compatible with the Swin Transformer architecture [39],
which initially applies a 4x downsampling, resulting in a
feature map with a maximum resolution equivalent to only
a quarter of the input image. To ensure compatibility with
Swin Transformer, we up-sample the points directly to match
the required resolution.

C. Image Matching Performance Evaluation

Table I demonstrates that our proposed GCM outperforms
all other existing algorithms in terms of overall and viewpoint
MMA on the HPatches dataset. It achieves results compara-
ble to LoFTR and better results than R2D2.
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TABLE I

MMA COMPARISON ON THE HPATCHES DATASET.

Frm)

7~ DENOTES RATIO TEST THRESHOLD.

Overall Iumination Viewpoint
Category Method @Ipx  @3px  @5px | @Ipx  @3px  @5px | @Ipx @3[;“ @spx Matches
Hand-Crafted SIFT+NNS [11] 035 050 054 | 037 049 052 | 033 052 055 04K
Fully Supervised R2D2+NNS [16] 033 076 084 | 038 081 090 | 029 071 0.9 1.6k
LoFTR [20] 063 091 093 | 068 095 096 | 059 086 091 2.6K
DFM (=0.90) [25] 051 085 093 | 063 091 097 | 042 08I 089 70K
Plug-and-Play DEM (r=0.60) [25] 061 088 094 | 077 093 098 | 047 084 090 10K
Ours (r=0.95) 053 085 092 | 056 087 094 | 050 084 090 144K
Ours (=0.60) 068 092 095 | 074 093 097 | 063 091 094  3.1K
TABLE II

MMA COMPARISON ON THE HPATCHES DATASET AMONG BACKBONE NETWORKS PRE-TRAINED FOR A VARIETY OF COMPUTER VISION TASKS.

“r” DENOTES RATIO TEST THRESHOLD. “*” DENOTES THE BACKBONE USED IN R2D2 [16].

Overall Tllumination Viewpoint
Task Method @Ipx  @3px  @5px | @Ipx @3px  @5px | @Ipx @3r;x @spx | Matches
ResNetl8 [31] 0.53 0.85 0.92 0.56 0.87 0.94 0.50 0.84 0.90 14.4K
ResNet18 (r=0.6) [31] 0.68 0.92 0.95 0.74 0.93 0.97 0.63 0.91 0.94 3.1K
Image ResNet18* (r=0.6) [16] 0.69 091 0.95 0.74 0.91 0.96 0.64 0.92 0.94 2.0K
Classification VGG19 [26] 0.56 0.86 0.92 0.60 0.89 0.95 0.51 0.84 0.89 13.3K
ResNet50 [31] 0.52 0.85 0.92 0.57 0.87 0.94 0.47 0.83 0.90 13.7K
ResNeXt50 [32] 0.50 0.85 0.92 0.55 0.88 0.94 0.46 0.83 0.90 12.4K
MobileV3 [33] 0.50 0.82 0.89 0.55 0.84 0.90 0.45 0.81 0.88 12.8K
EfficientNetV2 [34] 0.50 0.84 0.92 0.56 0.87 0.93 0.44 0.82 0.90 13.9K
Semantic FCN [38] 0.46 0.78 0.85 0.49 0.78 0.85 0.44 0.77 0.85 10.9K
Segmentation DeepLabV3 [37] 0.37 0.62 0.70 0.47 0.76 0.84 0.26 0.50 0.57 44K
Swin Tranformer [39] 0.53 0.80 0.88 0.60 0.81 0.89 0.46 0.79 0.87 47K
Stereo CREStereo [29] 0.51 0.73 0.75 0.57 0.78 0.81 0.46 0.68 0.70 23.3K
Matching PSMNet [30] 0.31 0.51 0.56 0.38 0.58 0.63 0.24 0.44 0.49 4.8K
DeepPruner [28] 0.31 0.50 0.55 0.37 0.57 0.62 0.24 0.44 0.48 5.2K
- Average Pooling 0.60 0.85 0.88 0.66 0.88 0.92 0.53 0.81 0.84 17.4K
TABLE III
HOMOGRAPHY ESTIMATION RESULTS ON THE HPATCHES DATASET.
Method Overall Illumination Viewpoint
@lpx @3px @5px | @lpx @3px @5px | @lpx @3px  @5px
SIFT [11]+NNS 0.42 0.74 0.85 0.54 0.86 0.93 0.30 0.54 0.71
SuperPoint [14]+NNS 0.46 0.78 0.85 0.57 0.92 0.97 0.35 0.65 0.74
D2Net [15]+NNS 0.38 0.71 0.82 0.66 0.95 0.98 0.12 0.49 0.67
R2D2 [16]+NNS 0.47 0.77 0.82 0.63 0.93 0.98 0.32 0.64 0.70
SuperPoint [14]+SuperGlue [17] 0.51 0.82 0.89 0.60 0.92 0.98 0.42 0.71 0.81
SuperPoint [14]+CAPS [53] 0.49 0.79 0.86 0.62 0.93 0.98 0.36 0.65 0.75
SuperPoint [14]+ClusterGNN [54] 0.52 0.84 0.90 0.61 0.93 0.98 0.44 0.74 0.81
SIFT+CAPS [53] 0.36 0.77 0.85 0.48 0.89 0.95 0.26 0.65 0.76
Patch2Pix [43] 0.50 0.79 0.87 0.71 0.95 0.98 0.30 0.64 0.76
MatchFormer 0.55 0.81 0.87 0.75 0.95 0.98 0.37 0.68 0.78
LoFTR 0.63 0.91 0.93 0.68 0.95 0.96 0.59 0.86 0.91
DFM [25] 0.41 0.74 0.85 0.63 0.91 0.97 0.21 0.59 0.74
Ours 0.55 0.84 0.90 0.73 0.95 0.98 0.38 0.73 0.81

Furthermore, the results presented in Table II confirm
the compatibility of our algorithm with various backbone
networks that are pre-trained for a wide range of computer
vision tasks, including image classification, semantic seg-
mentation, and stereo matching. Additionally, we propose an
alternative approach that does not rely on a visual backbone
network, by substituting the feature maps in the hierarchical
refinement strategy with descriptors average pooling to dif-
ferent scales. This method is represented as Average Pooling
in Table. II. The unsatisfactory results achieved with stereo-
matching backbone networks are somewhat unexpected, and
it is possible that these networks, primarily designed for
1D dense search, may not be well-suited for solving 2D
search problems that are more relevant to correspondence

matching tasks. This analysis provides valuable insights into
the performance variation observed with different types of
backbone networks and highlights the need for specialized
feature extraction and matching strategies in correspondence
matching applications. Considering the speed advantage of
the ResNet18 model, we choose ResNetl18 as the backbone
for experiments. It is also worth noting that the difference
in performance between using the original R2D2 backbone
and a lightweight distilled R2D2 backbone is minimal. This
demonstrates the effectiveness of the distillation strategy
in reducing computational complexity without sacrificing
performance.
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TABLE IV
POSE ESTIMATION PERFORMANCE EVALUATION ON THE
MEGADEPTH DATASET. THESE RESULTS DENOTE THE PERCENTAGES
OF CORRECTLY ESTIMATED POSES WITH POSE ERRORS BELOW
5/10/20°, RESPECTIVELY.

Pose Estimation AUC

Method @5° @10° @20° Precision
SIFT+NNS 16.70  28.15 41.84 35.53
D2-Net 4.44 8.27 14.17 48.58
SuperPoint+NNS 29.01 44.74 58.92 57.43
R2D2+NNS 41.15  58.88 72.84 81.51
SuperPoint+SuperGlue ~ 46.10  63.82 77.68 99.66
Patch2Pix 39.70  55.06 67.77 80.17
LoFTR 5242  69.26 81.41 96.78
DFM 2591 41.70 56.19 91.92
Ours 34.61 52.24 67.10 87.41
TABLE V

POSE ESTIMATION PERFORMANCE EVALUATION ON THE SCANNET
DATASET. “1” DENOTES THE MODELS TRAINED ON THE OUTDOOR
DATASETS AND EVALUATED ON THE SCANNET DATASET (INDOOR).

Pose Estimation AUC

Method o5 o10° @20° Precision
SIFT+NNS 5.83 13.06  22.47 40.30
SuperPoint+NNS 9.43 21.53 36.40 50.40
Patch2Pix " 9.57 21.22 34.56 50.59
R2D2f 6.82 1637  28.02 46.51
SuperPoint+SuperGlue 16.24  34.13 52.88 84.33
SuperPoint+SuperGlue ' 15.68 32.66 49.87 80.45
LoFTR 20.27  39.63 5747 83.92
LoFTRY 17.57 3446  51.88 70.16
DFM 3.73 9.76 18.94 74.77
Ours' 11.03 2373 38.93 67.63

D. Homography Estimation Performance Evaluation

In Table III, the accuracy metrics reported for overall,
illumination, and viewpoint matching at various thresholds
provide a comprehensive performance evaluation of homog-
raphy estimation for both our method and the compared
algorithms. Notably, while GCM achieves the second-best
performance across all these categories, it outperforms the
majority of data-driven approaches that are trained using
fully supervised correspondence ground truth.

E. Pose Estimation Performance Evaluation

Tables IV and V provide the performance evaluations
for pose estimation in outdoor and indoor environments,
respectively. The MegaDepth dataset presents a significant
challenge due to the necessity of matching under extreme
viewpoint changes and addressing issues related to high
texture repetition. Despite utilizing a non-specialized net-
work for deep feature extraction, our method consistently
demonstrates impressive performance on demanding test
data. While it may not reach the state-of-the-art performance
level achieved by fully supervised methods in pose estima-
tion, our approach represents a notable improvement over
the baseline plug-and-play algorithm DFM. Additionally, the
experimental results on the ScanNet dataset demonstrate that
our proposed GCM achieves performance levels comparable
to fully supervised methods and outperforms the baseline
algorithm DFM across most threshold values.

TABLE VI
ABLATION STUDY OF EACH COMPONENT ON HPATCHES DATASET.

Homography Estimation Accuracy

FHR  Descriptor  Distillation @ipx @3px @5px
0.37 0.68 0.80
4 0.41 0.72 0.82
v 4 0.42 0.72 0.83
v 0.38 0.71 0.83
v v 0.45 0.75 0.84
v v v 0.44 0.76 0.85

F. Abaltion Studies

We conduct an ablation study to determine the individual
and combined effects of FHR, patch descriptor, and descrip-
tor distillation on the homography estimation accuracy across
the overall Hpatches dataset, with the setup as referenced in
Sec. IV-C. The results are presented in Table VI. VGG19
is utilized as the backbone network and the baseline model
(the first row) is designated as DFM, with random sample
consensus (RANSAC) for homography matrix estimation to
ensure experimental consistency. Our key insights:

« Patch descriptors play a crucial role in improving accu-
racy, in the configurations where it is employed (the sec-
ond and fifth rows). These results underscore its essen-
tial contribution to baseline performance enhancement
and integration with FHR for further improvements.

o Descriptor distillation significantly refines patch de-
scriptor quality, leading to more accurate homography
estimation. This is evident in the configurations incorpo-
rating descriptor distillation (the third and sixth rows).

o« FHR contributes to a notable increase in accuracy
(from the fourth to the sixth rows). When applied in
combination with patch descriptor and distillation, FHR
significantly elevates the model’s overall performance.

V. CONCLUSION

In summary, this paper introduced three significant tech-
nical contributions to address the limitations present in
DFM: (1) a flexible hierarchical refinement strategy that
eliminates the need for a pre-defined threshold, initially
utilized in the hierarchical refinement process of DFM; (2)
the incorporation of a patch descriptor that extends the appli-
cability of DFM to accommodate a wide range of backbone
networks, pre-trained across diverse robot perception tasks,
such as semantic segmentation and stereo matching; (3) a
novel patch descriptor distillation strategy, which further
reduces the computational complexity of correspondence
matching and enhances the practical applicability of our
method in real-world robotics applications. Through per-
formance evaluations including image matching, homogra-
phy estimation, and pose estimation, the effectiveness of
our proposed algorithm is validated. Particularly noteworthy
is that our method achieves state-of-the-art overall mean
matching accuracy, outperforming both conventional hand-
crafted approaches and data-driven methods trained via fully
supervised learning. We are confident that our method can
be readily integrated into a variety of downstream real-world
robotics applications.
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