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Abstract

Road damage detection is an important aspect of road maintenance. Traditional manual inspections are laborious
and imprecise. With the rise of deep learning technology, pavement detection methods employing deep neural
networks give an efficient and accurate solution. However, due to background diversity, limited resolution, and
fracture similarity, it is tough to detect road cracks with high accuracy. In this study, we offer a unique, efficient and
accurate road crack damage detection, namely YOLOV8-ES. We present a novel dynamic convolutional layer(EDCM)
that successfully increases the feature extraction capabilities for small fractures. At the same time, we also present a
new attention mechanism (SGAM). It can effectively retain crucial information and increase the network feature
extraction capacity. The Wise-loU technigue contains a dynamic, non-monotonic focusing mechanism designed to
return to the goal-bounding box more precisely, especially for low-quality samples. We validate our method on both
RDD2022 and VOC2007 datasets. The experimental results suggest that YOLOV8-ES performs well. This unique
approach provides great support for the development of intelligent road maintenance systems and is projected to

achieve further advances in future applications.
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1 Introduction

Autonomous driving science and uncrewed aerial vehicle
(UAV) technology are experiencing significant growth [1-
3]. While the primarily former depends on terrestrial
transportation, uncrewed vehicles must regularly navi-
gate diverse and challenging terrains, including rocky and
arduous routes. Anticipating probable ground faults will
significantly enhance the vehicle’s ability to make precise
driving judgments [4], making detecting such defects ex-
tremely vital. Moreover, unmanned vehicles function as
transporTableplatforms for road monitoring [5], and their
operation effectively gathers data on road conditions. Si-
multaneously, UAVs, with their distinctive airborne van-
tage and adapTableagility, can offer significant data assis-
tance for terrestrial inspections. In summation, the signif-
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icance of ground defect inspection is apparent, serving as
the foundation for the safe and efficient operation of un-
manned technology and a crucial element in advancing
intelligent transportation systems to a higher echelon.
The primary considerations in road damage identifica-
tion are efficiency and accuracy, whereas conventional ap-
proaches depend on labor-intensive and time-consuming
human inspections [6]. The manual inspection involves
capturing photographs of identified faults stored on a hard
disk. An operator subsequently tracks, marks, and ana-
lyzes the cracks manually. This method will negatively
impact the pavement damage assessment procedure due
to inspector inexperience and visual inaccuracies [7]. To
mitigate these restrictions, researchers have commenced
trials involving road inspection vehicles [4, 5] and cell
phones [8]. Nonetheless, they are costly and challenging
to market. Currently, UAVs, characterized by their com-
pact size, affordability, versatility, high mobility, and capa-
bility for multi-channel parallel inspections, are garnering
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heightened interest in the structural health assessment of
civil engineering infrastructures [9, 10].

While these conventional approaches can be efficient,
they necessitate intricate procedures and are vulnerable
to variations in light and shadow. In recent years, deep
learning-based crack detection has garnered heightened
interest in the identification of road damage. Deep learn-
ing networks offer enhanced speed and precision in ob-
ject detection tasks, exhibiting significant robustness and
generalization abilities. By circumventing manual feature
extraction processes, deep learning can reduce the likeli-
hood of misclassification or the omission of essential target
characteristics during feature pre-sampling. This research
presents a novel target detection network. It is constructed
and verified using the RDD2022 and VOC2007 datasets to
enhance the efficiency and effectiveness of road defect de-
tection. The contributions to this work are enumerated be-
low:

1. In this research, we propose a Selective Global
Attention Mechanism (SGAM). It can efficiently
store information and magnify the interaction
features of the global dimension, hence boosting the
accuracy of the network model.

2. A new Enhanced Dynamic Convolution Module
(EDCM) is proposed to enhance the performance
and usefulness of the road damage detection system.

3. The Wise-IoU technique introduces a dynamic
non-monotonic focusing mechanism that provides
more accurate regression to the object bounding box,
especially for low-quality samples. This change in the
loss function considerably enhances the efficiency of
the object detection algorithm, making it more
dependable in real-world road traffic scenarios.

2 Related work

Road damage has been thoroughly examined for seg-
mentation [11-15], detection [16—23]; this article focuses
on object detection. Object identification methodologies
are primarily classified into single-stage and two-stage
algorithms. Representative instances of two-stage algo-
rithms encompass R-CNN [23] and Faster R-CNN [24].
Lin et al. [16] proposed importance weighting based on
Faster R-CNN to assess intermediate image-level align-
ment across sample domains and introduced aggregated
Rol-wise features with multiscale contextual informa-
tion to restore crack details for progressive domain align-
ment at the instance level. Nonetheless, both techniques
were constrained by the intricacy of the technological
model and the substantial resource consumption preva-
lent at that time. To tackle this issue, researchers examined
single-stage object detection algorithms, which exhibit su-
perior detection speed relative to two-stage algorithms,
wherein the initial detector employs a unified neural net-
work (e.g., SSD [25], EfficientDet [26], and the YOLO fam-
ily [17, 19-21]) to correlate image pixels with predictions
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directly. Naddaf-Sh et al. [27] used different scales of Ef-
ficientDet and many data augmentation policies for pave-
ment crack detection. The YOLO series has achieved nu-
merous successful applications in traffic-related domains
due to its limited training memory and optimized accuracy
and speed. Li et al. [19] introduced an enhanced YOLOX-
RDD model derived from YOLOX. It adaptively modifies
the receptive field based on object size. Additionally, by
incorporating the Feature Enhancement Attention (FEA)
module, fusing dark2 with the three output features of the
neck map, and implementing two-level adaptive spatial
feature fusion (ASFF), the model significantly enhances
the detection capabilities for multiscale targets. However,
there remains potential for further improvement in detec-
tion accuracy. Wang et al. [18] integrated SE and CA mod-
ules into YOLOV5 for comprehensive learning. Xiong et
al. [17] integrated GAM and Wise-IoU on top of YOLOvV8
to significantly increase the detection accuracy of the pro-
duced models. Ye et al. [28] incorporated the self-attention
mechanism module from the Swin Transformer, desig-
nated as a self-study module (Myswin), and additionally in-
tegrates a self-study module (FEEM) built upon the foun-
dation of YOLOV7.

Notwithstanding the considerable advancements in tar-
get recognition methodologies for road damage identifi-
cation, persistent issues remain: detecting small and ob-
scured ambiguous targets continues to pose substantial
challenges under intricate and dynamic road conditions.
The efficacy of current models in detecting these scenarios
must be enhanced. Numerous studies have concentrated
on enhancing the efficacy of attention mechanisms in
picture classification tasks. Squeeze-and-Excitation Net-
works (SENet) [29] pioneered the application of channel
attention and channel feature fusion to mitigate the in-
fluence of insignificant channels. Nevertheless, it was less
effective at suppressing insignificant pixels. Subsequent at-
tention mechanisms take into account both spatial and
channel dimensions. The Convolutional Block Attention
Module (CBAM) [30] implements channel and spatial at-
tention operations sequentially, whereas the Bottleneck
Attention Module (BAM) [31] executes them in parallel.
Nevertheless, both overlook channel-space interactions,
resulting in the loss of cross-dimensional information.
Recognizing the significance of cross-dimensional interac-
tions, researchers have conducted studies to tackle this is-
sue, and Zhang et al. [32] introduced a novel Efficient Pyra-
mid Squeezing Attention (EPSA) block. It adeptly extracts
multiscale spatial information at a more granular level and
enhances remote channel dependencies. Nonetheless, at-
tentional activities are executed simultaneously on two
dimensions rather than all three (channel, spatial width,
and spatial height). To enhance cross-dimensional interac-
tions, Liu et al. [33] suggested an attentional technique that
identifies significant aspects across all three dimensions. Li
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et al. [34] introduced a multidimensional attention mech-
anism and a parallel approach to acquire complementary
attention of the convolutional kernel across all four dimen-
sions of the kernel space in any convolutional layer. Like-
wise, Qi et al. [35] introduced a multi-perspective feature
fusion technique that enhances attention to significant fea-
tures from many viewpoints. However, existing convolu-
tional layers still have limitations in high-dimensional data
processing.

The loss function of Boundary Box Regression (BBR)
is essential for target detection. A precise definition will
yield substantial performance enhancement for the model.
YOLOV1 [36] formulates a loss function that incorporates
the BBR loss, classification loss, and objectivity loss. Nev-
ertheless, this type of loss function fails to mitigate the
impact of bounding box size and hence offers minimal
localization performance for the model. To resolve the
concerns above, the researchers conducted the following
study: Intersection over Union (IoU) [37]. It is employed
to quantify the extent of overlap between the anchor box
and the target box in a target detection job. It effectively
conceals the impact of bounding box size proportionally,
enabling the model to adeptly balance the learning of large
and small items when Lj,; is employed as a BBR loss.
Nonetheless, Lj,;; possesses a critical deficiency; in the ab-
sence of overlap between bounding boxes, the gradient of
Loy during backpropagation diminishes to zero. Conse-
quently, the width of the overlapping region remains unal-
tered during the training period. Current research exam-
ines several geometric parameters associated with bound-
ing boxes. Ma et al. [38] encompassed all pertinent el-
ements addressed in the current loss functions, includ-
ing overlapping or non-overlapping regions, centroid dis-
tances, and variations in width and height. Zhang et al. [39]
originally introduced the joint intersection (EIOU) loss,
which directly quantifies the discrepancies in three geo-
metric parameters in BBR: overlapping regions, centroids,
and edge lengths. Subsequently, Focal-EIoU v1 utilizing
non-monotonic FM was introduced. However, Focal-EIoU
vl fails to acknowledge that the quality evaluation of the
anchor frames is manifested in the intercomparison. It
fails to exploit the capabilities of non-monotonic FM fully.
Moreover, most previous research presumes that the train-
ing data comprises high-quality examples, neglecting the
impediment that subpar cases present to the learning ef-
ficacy of the target detection model, hence yielding con-
strained performance improvements. Tong et al. [40] in-
troduced a dynamic non-monotonic focus frame-based
loss function. It allocates a reduced gradient increment
to low-quality anchor boxes, thereby successfully mitigat-
ing the detrimental impact of low-quality instances on the
BBR.

This work addresses the issues above by implementing
EDCM and SGAM and enhancements to the loss function,
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thereby considerably augmenting the model’s detection ac-
curacy for road damage.

3 Method

3.1 Overview of our network

This study introduces a unique damage detection system,
termed YOLOVS-ES, to tackle road damage issues in ad-
verse weather conditions. This approach integrates three
essential elements into the YOLOvVS framework, and the
comprehensive network architecture presented in this re-
search is illustrated in Fig. 1.

3.2 EDCM

EDCM enhances detection accuracy by leveraging the
benefits of PSA (Pyramid Squeeze Attention) and ODConv
(OMNI-DIMENSIONAL DYNAMIC CONVOLUTION),
hence capturing target features with more precision.

In road damage identification, the road damage closely
resembles the background, rendering typical convolu-
tional networks incapable of reliably localizing the damage
location. Consequently, we propose a novel dynamic con-
volutional EDCM and include it in the backbone network
of YOLOV8n to enhance model accuracy without incur-
ring significant processing overhead. The comprehensive
procedure is illustrated in Fig. 2. Traditional dynamic con-
volution attributes the dynamic properties of convolution
kernels solely from one dimension of the kernel space (the
number of convolution kernels), neglecting the other three
dimensions (the spatial size of each convolution kernel, the
number of input channels, and the number of output chan-
nels). Conventional convolution is limited to adequately
capturing local information and needs to establish long-
range channel dependencies. Conversely, EDCM employs
multidimensional attention to acquire complementary fo-
cus across the four dimensions of the kernel space via a
parallel approach, refining the local fine-grained features
of the image while adeptly extracting multiscale spatial
information at a more granular level and fostering long-
range channel dependence to efficiently capture the salient
features of the image, thereby enhancing overall model
performance.

3.3 SGAM

SGAM through the incorporation of Squeeze-and-
Excitation (SE), Global Attention Mechanism (GAM), and
Coordinate Attention (CA), the network acquires the abil-
ity to leverage global information to selectively accentuate
salient characteristics while diminishing the significance
of less pertinent ones. Information is preserved to improve
cross-dimensional interactions and strengthen the repre-
sentation of global interaction. Additionally, by incorpo-
rating positional information into the channel attention,
the network can focus on a broader area, thereby enhanc-
ing the model’s feature extraction capability without signif-
icant computational costs. We integrate SGAM into the
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Figure 1 The overall architecture of the YOLOV8-ES model, where the EDCM module is embedded in the backbone structure. Also, SGAM network is
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Figure 2 The overall framework of the EDCM module. (a) leverages a multi-dimensional attention mechanism to compute four types of attentions
oesi, eeci, aefiandaewi for Wi along all four dimensions of the kernel space in a parallel manner. (b) can effectively extract multi-scale spatial information

neck of YOLOv8n. The entire procedure is illustrated in
Fig. 3.

3.4 Wise-loU loss
Wise-IoU is universally applicable as it incorporates a dy-
namic non-monotonic focusing mechanism to allocate
gradient gain more judiciously. This effectively addresses
low-quality training data, thereby enhancing the accuracy
and robustness of the target detection model, which has
extensive applications [41-43].

In road damage detection, obstacles arise from incom-
plete target boundaries and subpar quality samples. The
conventional geometric loss function CloU frequently im-

poses excessive penalties when addressing ambiguous tar-
get borders, thereby diminishing the model’s generaliza-
tion capability. Consequently, to mitigate the influence of
low-quality samples on the boundary loss function in tar-
get identification and enhance the accuracy of the net-
work model, we propose WIoU. WIoU is a dynamic non-
monotonic frequency modulation that enhances the em-
phasis on high-quality anchor boxes, mitigates the in-
fluence of low-quality samples, and offers a more thor-
ough training framework for the model. This work utilizes
WIoUv3, one of three versions of WloU. Wise-IoUv3 en-
hances Wise-IoUv1 by incorporating a non-monotonic fo-
cusing coefficient ‘t’ derived from the anomalous parame-
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ter 8. The formula is presented below [40]:

Lywiouvs = rLwiount, (1)
Lwiotm = RwiouLious (2)
(x— xgt)2 +(- ygt)2
Ryiou = , 3
Wioll GXP( (W; +Hg2)* 3)
L*
,3 = M; (4)
Ly
B
"= Sabs 2

In the above equations, the superscript “*” denotes the
segregation of W, and H, from the computational map,
hence enhancing convergence efficiency. B is defined as
the outlier degree, with a lower outlier degree indicating
a superior-quality anchor frame. A minimal gradient gain
is allocated to concentrate the bounding box regression on
standard quality anchor frames. Anchor boxes with more
outlier degrees are assigned a diminished gradient gain to
effectively mitigate the impact of low-quality data on cre-
ating substantial adverse gradients. Given that the quality
requirements for both Lj,;; and anchor boxes are dynamic,
WIoUv3 can consistently allocate the gradient gain ap-
proach that is most appropriate for the prevailing circum-
stances. Ly, functions as a moving average with momen-
tum m, and it is continuously adjusted to sustain a consis-
tently elevated S level. This effectively addresses the issue
of sluggish convergence during the latter phase of training.

4 Experiment

In the experimental part, we initially delineate the at-
tributes of the RDD2022 dataset. We will outline the con-
figuration of the experimental setting and the specific
procedures, encompassing data preprocessing, model se-
lection, model training, and evaluation techniques. Ulti-
mately, we examine the model’s performance outcomes
and assess the algorithm’s efficacy via ablation studies.

4.1 Material

4.1.1 Dataset

The Road Damage Dataset RDD2022 comprises 47,420
road photographs from six countries: Japan, India, the
Czech Republic, Norway, the USA, and China. These pic-
tures have been annotated with over 55,000 incidents of
roadway damage. The dataset encompasses four categories
of road damage: longitudinal cracks, transverse cracks,
alligator cracks, and potholes. The annotated dataset is
intended to develop deep learning systems to identify
and categorize road defects autonomously. The RDD2022
dataset offers extensive training data for deep learning
models, aiding researchers and developers in enhancing
and optimizing target detection methods for intricate road
damage identification.

4.1.2 Experimental environment

This paper’s software component utilizes the Pytorch
framework version 2.2.1, Cuda version 11.8, and Python
version 3.8. The gear comprises an RTX 4060 graphics
card, an R7-7435H CPU, and 16 GB of video memory.
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4.1.3 Details of the experiment

Step 1 (data preprocessing): To thoroughly assess the effi-
cacy of the target recognition algorithm for road damage,
we pick the RDD2022 dataset. We picked a total of 1977
photos from the China MotorBike part of RDD2022, allo-
cating 1187 images for training, 395 images for testing, and
395 images for validation. Confronted with photos that are
absent labels or erroneous annotations, we manually rec-
tify and tag them utilizing methods like Labellmg to guar-
antee the dataset’s accuracy and completeness.

Step 2 (Model Selection): Numerous advanced algo-
rithms have been created in the domain of target recogni-
tion and progressively implemented in traffic scene detec-
tion tasks. Each algorithm possesses distinct designs and
characteristics, each with certain advantages and down-
sides. When choosing an algorithm for our research, it
is crucial to evaluate both its intrinsic performance and
its adaptability to a specific dataset. This study exam-
ines eight cutting-edge target identification algorithms:
YOLOV5, SSD [25], YOLOV7 [20], EfficientDet [26], Faster
R-CNN [24], YOLOVS, Li [19] and Wang [18] This work
also presents and integrates a novel target identification
approach, YOLOV8-ES. While these algorithms have ex-
hibited outstanding performance in their specific areas
and practical applications, our primary objective is to dif-
ferentiate their performance in traffic scenarios. To at-
tain this objective, we evaluate them against a harmonized
dataset to determine the most appropriate model for ob-
ject detection in traffic scenarios.

Step 3 (Model Training): In the context of our research,
the YOLOVS-ES model is subjected to a stringent train-
ing protocol utilizing a transfer learning methodology. We
initialize the model with commonly utilized pre-training
weights from the COCO dataset. Subsequently, the model
is refined using our harmonized dataset. Table 1 presents a
comprehensive enumeration of configuration parameters
related to all the models.

Our model has exceptional performance across various
measures, as illustrated in Fig. 4. In particular, our model
achieves high-precision object detection in complex road
scenarios and maintains sTableperformance when dealing
with blurred backgrounds and objects of different propor-
tions.

Step 4 (Model assessment): To thoroughly and systemat-
ically assess the model’s performance in target recognition
inside traffic scenarios, we utilize a range of defined assess-
ment metrics, including precision, recall, and F1. These

Table 1 Parameter configuration of all the models

Training parameters Details
Epochs 100
batch-size 16
image-size (pixels) 512 x 512
Initial learning rate 0.01
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measures offer a quantitative assessment of the model’s
overall performance in intricate traffic scenarios. Should
the model exhibit subpar performance in specific areas, we
may contemplate adjusting the hyperparameters or aug-
menting the training dataset to improve its efficacy. Main-
taining a balance between overfitting and underfitting is
essential for the model’s generalizability. In the following
section, we will examine the particular evaluation metrics
employed in this study.

This research study adopts the evaluation metrics of
Mean Average Precision(mAP), recall and F1 to scrutinize
the capabilities of the developed YOLOVS-ES model (see
Egs. (6)-(8)) [44].

TP
Precision = ———, (6)
TP + FP
P
Recall = ——, (7)
TP + FN

Precision x Recall
F1=2x — , (8)
Precision + Recall

where TP (true positive) is the number of true positive
detections, FP (false positive) is the number of bounding
boxes that the model incorrectly predicts, and FN (false
negative) is the number of existing objects that are not de-
tected by the model. Precision indicates whether detection
results are correct, while recall indicates whether targets
are detected. Due to the conflict between them, F1 is usu-
ally used to be a balanced measure. AP is calculated based
on the precision-recall curve, which is commonly used in
object detection tasks. mAP denotes the average value of
AP for each category [45].

1
AP - / P(R)dr, 9)
0

N
1
mAP = — ZI:APi. (10)

4.2 Result

To assess the improved efficacy of the proposed model,
eight noTabletarget detection networks (YOLOvV5, SSD
[25], YOLOV7 [20], EfficientDet [26], Faster R-CNN [24],
YOLOWVS, Li [19] and Wang [18]) were comparatively an-
alyzed within the same configuration framework using
the RDD2022 dataset. Faster R-CNN has a two-stage de-
tection methodology, whereas SSD, Li [19], Wang [18],
YOLOvV7, EfficientDet, and YOLOV5 are all single-stage
detection algorithms. The outcomes of this comparison
are presented in Table 2. The results indicate that the
model sizes of the algorithms created in this study are
considerably less than those of YOLOvV7, SSD, and Faster
R-CNN while substantially surpassing these models in
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Figure 4 Results of the proposed model
Table 2 Comparison of experimental results of YOLOV8-ES with other object detection algorithms on RDD2022
Model Venue F1 Recall mAP50 FPS GFLOPs
SSD ECCV'16 0.548 0467 0.664 55 62.7
Faster R-CNN ICCV'15 0.389 0.310 0.523 20 934
EfficientDet CVPR20 0407 0.315 0.575 36 7.5
YOLOvV5 / 0.739 0.652 0.731 66 43
YOLOv7 CVPR23 0.779 0.753 0.809 46 133
YOLOV8 / 0.781 0.762 0.805 71 8.2
Li[19] T-ITS'24 0.773 0.749 0.779 27 84
Wang [18] T-ITS'24 0.785 0.890 0.891 77 7.5
YOLOV8-ES(ours) - 0.850 0.809 0.888 79 9.8

mAP50 performance. Moreover, our proposed model ex-
hibits superior GFLOPs performance and significantly
outperforms Li [19], YOLOVS5, EfficientDet, and YOLOvV8
in mAP50, which is essential for effectively addressing
the pavement crack detection task and meeting contem-
porary accuracy requirements in complex environments.
Our suggested approach is marginally less practical than
Wang [18] in mAP50, whereas it has superior detection
speed. The YOLOvS-ES model demonstrates superior and
consistent detection results compared to one-stage and
two-stage deep learning models. This comparison clearly
emphasizes the superior performance of YOLOVS-ES in
damage detection. In conclusion, YOLOVS-ES exhibits su-
perior performance and provides a distinct advantage in
detecting roadway damage in traffic situations. It substan-
tially enhances the achievement of safer and more efficient
urban transportation possibilities.

To assess the generalization and robustness of the pro-
posed algorithm, eight noTabletarget detection networks

(YOLOVS5, SSD [25], YOLOv7 [20], EfficientDet [26],
Faster R-CNN [24], YOLOVS, Li [19] and Wang [18]) were
evaluated within a consistent configuration framework on
the VOC2007 dataset. The out- comes of this compari-
son are presented in Table 3. The proposed model sur-
passed most others in mAP50 (58.3%), recall (53.4%), and
F1 (0.580), indicating the significant potential of YOLOVS-
ES to manage diverse data types effectively. In contrast to
Faster R-CNN and SSD, the proposed model exhibits a di-
minished mAP50 value; however, it surpasses these mod-
elsin recall, FPS, F1, and GFLOPs, underscoring its superi-
ority in scenarios where computational resources are lim-
ited and real-time detection is essential. While YOLOv7
surpasses the proposed model in mAP50, recall, and F1,
it falls short in FPS and GFLOPs. This suggests that our
proposed model can achieve high accuracy even in sce-
narios with limited computational resources and the need
for real-time detection.
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Table 3 Comparison of experimental results of YOLOv8-ES and other object detection algorithms on VOC2007
Model Venue F1 Recall mAP50 FPS GFLOPs
SSD ECCV'16 0.556 0481 0.680 21 62.7
Faster R-CNN ICCV'15 0.508 0.487 0.699 13 934
EfficientDet CVPR'20 0387 0.283 0.537 19 7.5
YOLOV5 / 0.555 0.469 0511 22 43
YOLOv7 CVPR23 0.646 0.599 0.621 24 133
YOLOv8 / 0.566 0519 0.562 78 82
Li[19] T-TS24 0519 0.483 0.525 13 8.4
Wang [18] T-ITS'24 0.599 0.548 0.572 57 7.5
YOLOV8-ES(ours) - 0.580 0534 0.583 60 9.8
Table 4 Experimental results for the components
Model EDCM SGAM WioU Precision Recall mAP50 mAP50-95
YOLOv8 0.802 0.762 0.805 0511
v 0.823 0.751 0.820 0511
v 0.855 0.757 0.826 0528
v 0.867 0.817 0.862 0.554
v v 0.859 0.796 0.847 0.544
v v 0.852 0.767 0.850 0.555
v v 0.825 0.762 0.825 0514
v v v 0.895 0.809 0.888 0.576

4.2.1 Ablation experiment

This section shows a series of ablation experiments to val-
idate the effectiveness of the algorithm improvement, with
comparison results displayed in Table 4. Each phase of
the enhanced algorithm demonstrates substantial perfor-
mance improvement in complex road damage detection.
The updated YOLOv8n model with EDCM exhibited a
1.5% enhancement, achieving 82% in mAP50 compared
to YOLOv8n. EDCM mitigates the constraints of con-
ventional convolutional layers in high-dimensional data
processing by implementing a multidimensional attention
mechanism and a parallelization strategy, thereby enhanc-
ing the efficiency and efficacy of convolutional neural net-
works in capturing multidimensional features and intricate
dependencies. The mAP of the YOLOv8n model, follow-
ing the incorporation of SGAM, demonstrates a relative
enhancement of 2.1%, reaching 82.6% compared to the
original YOLOv8n. The module improves the model’s lo-
calization and recognition precision by recalibrating chan-
nel feature responses, preserving essential information,
and enhancing global cross-dimensional interactions. It
also efficiently captures cross-channel, orientation-aware,
and position-sensitive data. The incorporation of SGAM
successfully mitigates the issues related to feature ex-
traction concerning the morphology and characteristics
of intricate objects. The YOLOvV8 model, with modifica-
tions to the loss function, enhances the mAP of the orig-
inal YOLOvV8n by approximately 5.7%, reaching 86.2%.
The balanced gradient assignment helps the model fo-
cus on average-quality anchor boxes. This prevents over-
fitting to high-quality samples and excessive penalization

Table 5 Performance comparison of convolution layer

Method F1 Recall mAP50 mMAP50-95
YOLOv8 0.781 0.762 0.805 0511
+0ODConv 0.778 0.729 0.815 0.513
+EPSA 0.782 0.747 0.818 0.512
+DSCNet 0.785 0.752 0814 0517
+EDCM 0.786 0.751 0.820 0511

of low-quality ones. It improves the model’s adaptability
to real-world situations and boosts overall detection per-
formance. Ultimately, our model surpasses the original
YOLOvV8n by 10.3%, achieving a performance of 88.8%),
illustrating the efficacy of the numerous changes imple-
mented. These findings underscore algorithmic improve-
ment’s significance and practical utility in intricate road
damage identification.

Table 5 presents the efficacy of EDCM in delineating in-
tricate characteristics in crack images within the frame-
work of crack detection tasks. The experimental findings
on the RDD2022 dataset utilize YOLOvS8n as the baseline.
The results are concisely summarized below. The F1, Re-
call, mAP50, and mAP50-95 of EDCM are 0.786, 75.1%,
82%, and 51.1%, respectively. The performance surpasses
the other three noTableconvolutional layers, substantiat-
ing the efficacy of EDCM in road damage identification.

Table 6 presents the experimental findings on the
RDD2022 dataset utilizing YOLOVS as the baseline, con-
trasting the suggested SGAM with the salient attention
mechanism. The F1, Recall, mAP50, and mAP50-95 of
SGAM are 0.803, 75.7%, 82.6%, and 52.8%, respectively.
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Table 6 Performance comparison of attention mechanisms

Method F1 Recall mAP50 mAP50-95
YOLOV8 0.781 0.762 0.805 0511

+SE 0.795 0.743 0.814 0516
+CBAM 0.782 0.747 0818 0512

+CA 0.787 0.751 0.815 0527
+GAM 0.803 0.753 0.825 0515
+SGAM 0.803 0.757 0.826 0528
Table 7 Performance comparison of the loss function

Method F1 Recall mAP50 mAP50-95
YOLOV8 0.781 0.762 0.805 0511
+Focal-EloU 0.822 0.781 0.843 0.544
+MPDIoU 0.803 0.796 0.842 0.549
+EloU 03813 0.768 0.836 0.537
+WiloU 0.841 0.817 0.862 0.554

The performance surpasses that of the other four promi-
nent attention mechanisms, effectively demonstrating the
superiority of SGAM in road damage identification.
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The part of the loss function is detailed in Table 7. The
results indicate that the WIoU employed in this work
achieves an mAP50 of 86.2%, surpassing EioU (83.6%),
Focal-EioU (84.3%), and MPDIoU (84.2%). Moreover,
WIoU surpasses alternative loss functions in F1, Recall,
and mAP50-95. This further substantiates the appropri-
ateness of the WIoU loss function for crack detection ac-
tivities.

4.2.2 Results shown

Figure 5 illustrates the detection outcomes of the YOLOV8-
ES model with eight noTabletarget detection networks
(YOLOv5, SSD [25], YOLOvV7 [20], EfficientDet [26],
Faster R-CNN [24], YOLOVS, Li [19] and Wang [18]) de-
tecting road damage cracks. The YOLOV8-ES model ef-
fectively identifies cracks. EfficientDet and Faster R-CNN
failed to identify true-positive cracks in images charac-
terized by poor illumination, shadows, low contrast, and
irregular shapes of varying sizes. In contrast, Wang [18],
SSD, YOLOV5, YOLOVS, and YOLOV7 experienced partial
omissions in detecting fine cracks. Li [19] and Wang [18]
observed that the model produced erroneous bounding

Figure 5 Comparison of different models with ours

L[27]

v // / y\‘ \\
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boxes for fine cracks and consistently predicted the same
crack. In YOLOVS5, the produced bounding boxes are often
too massive or tiny, hindering precise target recognition.
However, our proposed model can accurately distinguish
the occluded cracks and maintains sTableperformance
when dealing with blurred backgrounds and objects with
different scales. This is a crucial performance attribute for
damage identification in intricate and realistic environ-
ments. It contributes to establishing a more dependable
basis for scientific inquiry. It offers enhanced and precise
target detection solutions for road damage assessment and
possesses significant promise for future scientific inquiry
and applications.

4.2.3 Conclusion

The experimental findings unequivocally validate the ef-
ficacy of YOLOVS-ES and the model transportation sys-
tem in advanced intelligent object detection. They were
incorporated into the YOLOvV8 framework by integrating
EDCM, SGAM, and Wise-IoU methods. We have achieved
substantial advancements in precisely recording intricate
object shapes and characteristics, even in scenarios with
occlusion and blurring. The model’s versatility in detect-
ing diverse road damage conditions significantly enhances
intelligent road maintenance systems.

This study holds substantial practical importance for en-
hancing the safety and efficiency of urban transportation,
mitigating traffic accidents, and improving the urban land-
scape. Through continuous efforts and research, we im-
prove intelligent road damage identification. This will in-
crease convenience and safety in urban transportation in
the future. While our strategy yields exceptional results,
it is essential to acknowledge that it incurs a more signif-
icant computational expense. Future studies will explore
lightweight network designs to address this issue. Further-
more, future studies should incorporate considerations for
implementing networks on hardware devices.
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