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Abstract

effective and reliable road scene parsing.

Road scene parsing is a crucial capability for self-driving vehicles and intelligent road inspection systems. Recent
research has increasingly focused on enhancing driving safety and comfort by improving the detection of both
drivable areas and road defects. This article reviews state-of-the-art networks developed over the past decade for
both general-purpose semantic segmentation and specialized road scene parsing tasks. It also includes extensive
experimental comparisons of these networks across five public datasets. Additionally, we explore the key challenges
and emerging trends in the field, aiming to guide researchers toward developing next-generation models for more
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1 Introduction

Advancements in machine intelligence and autonomous
systems have dramatically fueled the integration of envi-
ronmental perception technologies into daily life and var-
ious industries [1-5]. This widespread adoption is promi-
nently seen in applications such as autonomous cars [6],
smart wheelchairs [7], and unmanned ground vehicles
[8]. Recently, researchers have shifted their focus toward
enhancing both driving safety and comfort [9, 10]. Road
scene parsing, which performs pixel-level detection of
drivable areas (also known as freespace or collision-free
spaces) and road defects, such as potholes and cracks, is
critical for achieving these objectives [4, 11, 12].
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Representative prior studies conducted in this field over
the past decade are illustrated in Fig. 1. Apart from the tra-
ditional 2D image processing algorithms, such as image fil-
tering and segmentation, which were developed decades
ago, geometry-based techniques have long been the most
effective approaches in this field. These techniques typi-
cally utilize explicit geometric models, such as planar and
quadratic surfaces, to represent regions of interest (Rols),
which can be accurately extracted by minimizing specific
energy functions. For instance, in the study [13], road sur-
faces are modeled as quadratic surfaces, which are inter-
polated from 3D point clouds through least squares fit-
ting. A novel disparity transformation algorithm was then
introduced in [14], which processes dense disparity maps
to simulate a quasi-bird’s eye view of the road. This trans-
formation ensures that disparities in undamaged road ar-
eas appear uniform, making both positive and negative ob-
stacles distinctly noticeable. Other studies, such as [15]
and [16], generally employ a B-spline model to fit road
disparity maps, which are subsequently projected onto a
2D v-disparity histogram for drivable area and road defect
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Figure 1 Representative prior studies [11, 13, 17-24] on road scene parsing conducted over the past decade

detection. However, the frequently uneven nature of ac-
tual roads can sometimes compromise the effectiveness of
these methods [14].

With the advent of deep learning, convolutional neural
networks (CNNs) have revolutionized road scene parsing,
which is now typically formulated as a pixel-level binary
or ternary classification task [11]. These methods signifi-
cantly outperform traditional image processing-based and
geometry-based approaches, demonstrating marked im-
provements in overall performance. For instance, in [25]
an encoder-decoder CNN architecture is used to segment
RGB images projected into a bird’s eye view for drivable
area detection. However, this approach often underper-
forms in diverse and challenging illumination and weather
conditions. To address these limitations, subsequent re-
search has explored the use of data-fusion networks with
duplex encoder architectures, significantly enhancing the
accuracy of road scene parsing [23, 26]. The authors of
[27] extracted heterogeneous features from RGB-depth
data and performed feature fusion using a straightforward
element-wise summation operation. The fusion of diverse
feature types brings a deeper understanding of various
scenarios, resulting in superior performance over prior
single-modal networks. Similarly, our SNE-RoadSeg se-
ries [6, 26, 28] achieve RGB-normal feature fusion through
element-wise summation or holistic attention. By integrat-

ing a duplex backbone network with a densely-connected
decoder, the SNE-RoadSeg series achieve state-of-the-art
(SOoTA) performance on multiple datasets, including the
KITTI Road [29], vKITTI2 [30], and Cityscapes [31]. How-
ever, these approaches are constrained by either the sim-
plistic and indiscriminate fusion of heterogeneous features
or the presence of extensive trainable parameters. Both
limitations can lead to conflicting feature representations
and inaccurate scene parsing results.

Transformers have demonstrated their superiority over
CNNs, particularly when large-scale, well-annotated data-
sets are available for model training [32—-34]. This advan-
tage stems from the self-attention mechanisms in Trans-
formers, which enable more effective global context mod-
eling compared to conventional CNNs [35]. As a result,
leveraging attention mechanisms to enhance the fusion
of heterogeneous features extracted by duplex encoders
has become an increasingly popular research focus. OFF-
Net [23] represents the first attempt to utilize the Trans-
former for data-fusion road scene parsing. Trained on ex-
tensive off-road datasets, it achieves marginal improve-
ments over previous CNN-based algorithms. Nonethe-
less, OFF-Net employs a lightweight CNN-based decoder
rather than a Transformer-based one. We believe that
adopting a Transformer-based decoder could significantly
enhance the upper limit of road scene parsing perfor-
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mance. We also observe its unsatisfactory performance
in urban road scenes, particularly under data-constrained
conditions [11].

Therefore, in this article, we provide a brief review
of SoTA CNNs and Transformers designed for general-
purpose semantic segmentation and specific road scene
parsing tasks. We compare their performance across mul-
tiple public datasets to establish a benchmark for fu-
ture developments. This review aims to guide readers
and researchers in the field toward the creation of next-
generation models for road scene parsing.

The remainder of this article is organized as follows:
Sect. 2 details the most commonly used datasets for road
scene parsing. Section 3 reviews SoTA networks for gen-
eral semantic segmentation. Section 4 reviews networks
developed specifically for road scene parsing. Section 5
presents extensive experimental results and comprehen-
sive analyses of model performance. Section 6 discusses
the existing challenges and future trends in this field of re-
search. Finally, Sect. 7 concludes the article.

2 Existing public datasets

« Cityscapes [31]: This dataset is widely used for urban
scene parsing. It contains 2975 stereo images for
model training and 500 images for model validation,
each with well-annotated semantic ground truth. All
experimental results presented in this study are
derived from the validation set. More details on this
dataset are available at https://www.cityscapes-
dataset.com. In our experiments, depth images are
generated using RAFT-Stereo [36], trained on the
KITTI Stereo dataset [37]. Surface normal
information is subsequently computed using our
proposed depth-to-normal translation algorithm [38].

« KITTI Semantics [39]: This dataset consists of 200
real-world RGB images, each with semantic
ground-truth annotations for 19 classes, aligned with
the Cityscapes dataset [31]. Detailed information is
available at https://www.cvlibs.net/datasets/kitti/eval_
semseg.php?benchmark=semantics2015. To evaluate
the performance of road scene parsing models,
semantic labels are grouped into two categories:
freespace and others. Sparse disparity ground truth is
obtained using a Velodyne HDL-64E LiDAR, while
dense depth maps are generated using a well-trained
CreStereo model [40]. In this study, the dataset is
randomly split into training and validation sets in a 3:1
ratio.

« KITTI Road [29]: This dataset contains 289 pairs of
stereo images and their corresponding LiDAR point
clouds, utilized for both model training and validation.
It also includes a comparable amount of testing data
without semantic annotations. The model’s
quantitative performance on the test set has to be
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evaluated by submitting qualitative results to the
online KITTI Road benchmark, available at https://
www.cvlibs.net/datasets/kitti/eval_road.php. In this
study, we adopt a data pre-processing strategy akin to
that described in [26].

+ OREFD [23]: This dataset is designed specifically for
oft-road drivable area detection. It contains 12,198
RGB images with corresponding LiDAR point clouds,
collected across diverse scenes under different weather
and illumination conditions. Additional details on this
dataset can be found at https://github.com/
chaytonmin/Off-Road-Freespace-Detection. In this
study, we follow the data splitting and pre-processing
strategies described in the original publication [23],
with the exception of surface normal estimation.

+ SYN-UDTIRI [11]: Due to the limited availability of
well-annotated, large-scale datasets designed
specifically for road scene parsing (including drivable
area and road defect detection), the study [11]
introduces a synthetic dataset called SYN-UDTIRI,
developed using the CARLA simulator [41]. This
dataset incorporates digital twins of real-world road
potholes, created with a 3D road geometry
reconstruction algorithm [14, 20]. To better replicate
the roughness of actual roads, random Perlin noise is
added to the road data. Six driving scenarios are
simulated under different weather and illumination
conditions, including rainy day, dusk, and night, as
well as sunny day, dusk, and night. A simulated stereo
rig with a 0.5 m baseline was mounted on a moving
vehicle, generating over 10,000 pairs of stereo road
images (resolution: 720 x 1280 pixels), along with
depth images, surface normal data, and semantic
annotations for three categories: drivable area, road
defect, and other objects. Additional details about the
SYN-UDTIRI dataset are available at https://github.
com/LiJiahang617/Road-Former.

3 General semantic segmentation models for road
scene parsing

This section provides a brief review of SoTA single-modal

and feature-fusion general-purpose semantic segmenta-

tion networks. Their performance is evaluated both quan-

titatively and qualitatively in Sect. 5.

3.1 Single-modal models

Fully convolutional network (FCN) [42] marks a significant
milestone in utilizing CNNs for end-to-end scene pars-
ing. Nonetheless, its segmentation often overlooks pixel
relations, leading to outputs that lack spatial consistency.
Additionally, FCN incurs high memory usage and com-
putational complexity. Fast FCN [43] addresses these is-
sues by using upsampling convolutions to extract high-
resolution feature maps, improving spatial consistency
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while reducing computational complexity by over three-
fold. Fast-SCNN [44] introduces a “learning to downsam-
ple” module for efficient computation on embedded de-
vices with limited memory, thereby enhancing the real-
time performance of semantic segmentation models on
high-resolution images. Inspired by proportional-integral-
derivative (PID) controllers, PIDNet [45] integrates CNNs
with PID controllers, forming a novel architecture that
contains three branches designed to parse detailed contex-
tual and boundary information. PIDNet achieves an opti-
mal balance between inference speed and accuracy.

Recent advancements in semantic segmentation have
been propelled by methods that expand the receptive fields
using pyramid-based multi-resolution feature extraction
techniques [46-51]. For instance, DeepLabv3 [48] utilizes
parallel atrous spatial pyramid pooling (ASPP) modules to
capture contextual information at multiple scales. How-
ever, the stride operations in DeepLabv3 can lead to the
loss of fine details at object boundaries. To overcome this
limitation, DeepLabv3+ [49] introduces a concise yet ef-
fective decoder into DeepLabv3, dramatically improving
semantic segmentation results, particularly along label
boundaries.

Unlike prior works [42, 52] that focus on the recov-
ery of high-resolution feature maps from lower reso-
lutions, the high-resolution network (HRNet) [53] pre-
serves high-resolution representations throughout the en-
tire feature extraction and fusion process. This design
achieves more accurate predictions by employing progres-
sive and repetitive multi-scale feature fusions through par-
allel multi-resolution sub-networks. PointRend [54] intro-
duces a novel point-based rendering technique within a
neural network module for image segmentation. By mak-
ing predictions at adaptively selected locations determined
through an iterative subdivision algorithm, PointRend en-
ables precise and flexible segmentation, applicable to both
instance and semantic segmentation tasks.

Attention mechanisms have become integral to recent
scene parsing networks, significantly improving their abil-
ity to focus on relevant features within an image. However,
their extensive computational demands have posed sig-
nificant limitations for deployment. To address this chal-
lenge, the asymmetric non-local neural network (ANN)
[55] samples only a few representative points from the fea-
ture maps, drastically reducing computational complex-
ity. Furthermore, traditional attention mechanisms involve
both pairwise and unary terms, which can be difficult to
optimize independently. The disentangled non-local net-
work (DNLNet) [56] effectively addresses this challenge by
decoupling the interdependence between these two com-
ponents, enabling more efficient learning and application.
Building on prior works, the global context network (GC-
Net) [57] provides a simplified query-independent for-
mulation, preserving the accuracy of non-local networks
while significantly reducing computational overhead.
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While attention mechanisms have outperformed tradi-
tional approaches, such as ASPP [48], large convolutional
kernels, and stacked convolutional layers, in terms of
segmentation performance, their substantial GPU mem-
ory demands often make them prohibitively expensive.
Therefore, several networks have been developed to min-
imize computational requirements. The interlaced sparse
self-attention network (ISANet) [58] factorizes the dense
affinity matrix into the product of two sparse matrices,
thereby reducing the computational load. Unlike methods
that treat all pixels as reconstruction bases [59, 60], the
expectation maximization attention network (EMANet)
[61] identifies a more compact basis set, significantly de-
creasing computational complexity. This approach effec-
tively simplifies the creation of large attention maps while
also substantially reducing memory consumption. Fur-
thermore, CGNet [62] introduces a parameter-efficient
context-guided (CG) block that integrates local features
with surrounding context and refines them using global
context. Leveraging this module, CGNet delivers competi-
tive performance on the Cityscapes dataset [31] with fewer
than 0.5 million parameters.

The vision Transformer (ViT) [63] has been gaining mo-
mentum in recent years, particularly for semantic seg-
mentation. The segmentation Transformer (SETR) [64]
is the first Transformer-based general-purpose semantic
segmentation network. Building on the success of ViT
[63], SETR tokenizes images into patches that are pro-
cessed through Transformer blocks. The encoded fea-
tures are then gradually upsampled through convolutions
to achieve pixel-level classification. SegFormer [34] intro-
duces a multi-scale Transformer encoder for semantic seg-
mentation, which stacks Transformer blocks and inserts
convolutional layers between them. Compared to SETR,
SegFormer greatly improves segmentation performance,
particularly when handling objects of varying sizes. Swin
Transformer employs a hierarchical Transformer architec-
ture that computes representations with shifted windows.
Inspired by DETR [65], Segmenter develops a mask Trans-
former decoder that captures global context effectively
during both encoding and decoding stages. To improve se-
mantic segmentation at both global and local scales, Twins
[66] adopts a dual-branch architecture that captures global
contextual information in one branch and focuses on lo-
cal boundary details in the other. DPT [67] uses ViT as
the backbone, assembling tokens at different resolutions
from multiple stages of ViT and progressively combin-
ing them into full-resolution predictions via a convolu-
tional decoder. ViT processes images at a constant, rela-
tively high resolution, enabling a global receptive field at
every stage, which allows the generation of finer-grained
and more globally coherent predictions. Similar to the self-
attention mechanism used in ViT, object-contextual rep-
resentation (OCR) [68] characterizes pixels by exploiting
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the representations of corresponding object classes. While
traditional multi-scale context schemes differentiate pix-
els based on spatial positions, OCR distinguishes between
contextual pixels of the same object class and those from
different classes. Inspired by Transformer-based architec-
tures, K-Net [69] addresses various image segmentation
tasks, including semantic, instance, and panoptic segmen-
tation. This is achieved primarily through a set of learnable
kernels, where each kernel generates a mask for either a
potential instance or a stuff class.

In contrast to the Transformer-based networks dis-
cussed above, MaskFormer [70] introduces a novel para-
digm for semantic segmentation that moves beyond tradi-
tional per-pixel classification. This architecture performs
semantic segmentation by decoding query features into
class-specific masks. Specifically, MaskFormer utilizes a
multi-scale Transformer decoder that simultaneously gen-
erates masks for each class using refined queries, demon-
strating superior performance over previous per-pixel
classification approaches. Similarly, Mask2Former [71] ex-
tends these capabilities to a broader range of image seg-
mentation tasks using a Transformer-based architecture.
Built upon MaskFormer [70], it further employs a masked
attention mechanism that greatly improves network per-
formance across various segmentation tasks.

3.2 Feature-fusion models

Feature-fusion models effectively leverage heterogeneous
features extracted from both RGB images and spatial ge-
ometric data, such as depth, surface normal, and trans-
formed disparity, to improve scene parsing performance.
FuseNet [27] is among the first to integrate depth infor-
mation into scene parsing. It employs separate CNN en-
coders for RGB and depth images and fuses their features
via element-wise summation. MFNet [72] achieves a bal-
ance between speed and accuracy in driving scene parsing
through RGB-thermal data fusion. Similarly, RTFNet [73]
utilizes RGB-thermal data as inputs and develops a robust
decoder that uses shortcuts to produce clear boundaries
while retaining detailed features. While general-purpose
feature-fusion models can be applied to road scene pars-
ing, task-specific approaches [11, 26, 28] have been shown
to consistently deliver superior performance.

4 Task-specific road scene parsing models
This section provides a brief review of SoTA task-specific
road scene parsing models, which can be categorized into
2D, 3D, and hybrid approaches. Their performance is eval-
uated both quantitatively and qualitatively in Sect. 5.
Early task-specific road scene parsing methods [74-77]
predominantly rely on RGB images. Notable advance-
ments in this area include HA-DeepLabv3+ [78] and
LFD-RoadSeg [79]. The former introduces an innovative
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data augmentation strategy based on stereo homography,
which generates synthetic images from target images as
if viewed from a reference perspective. This method sig-
nificantly outperforms the baseline DeepLabv3+ [80] and
other SoTA stereo vision-based approaches. The recent
study [79] introduces LFD-RoadSeg, a two-branch driv-
able area detection model. The first branch extracts low-
level features using the initial stages of ResNet-18 [81],
while the second branch enhances contextual recognition
by simultaneously downsampling the image and aggregat-
ing features. This feature extraction and aggregation strat-
egy enables receptive fields comparable to those of the
third stage of ResNet-18, while significantly reducing com-
putational time. A selective fusion module then calculates
pixel-wise attention between the low-level representation
and contextual features to effectively and efficiently dis-
tinguish between road and non-road areas. Nevertheless,
these 2D approaches remain highly sensitive to environ-
mental factors such as illumination and weather condi-
tions [26].

With the increasing use of range sensors, particularly
LiDARs, 3D approaches [82, 83] have become more ro-
bust for road scene parsing. The study [82] presents a deep
learning approach for drivable area detection that relies
solely on LiDAR data, where unstructured point clouds are
transformed into top-view images. These images capture
basic statistics, such as mean elevation and density, thereby
simplifying the drivable area detection task into a single-
scale problem. Subsequently, the study [83] presents a
CNN model designed specifically for LiDAR-based se-
mantic segmentation. A computationally efficient hard-
ware architecture is developed and deployed on an FPGA,
achieving a processing time of only 17.59 ms per LiDAR
scan.

Moreover, LIDAR-camera data fusion approaches have
recently become the predominant methods in this do-
main. A research group has introduced a series of net-
works [84-86] to solve this problem. For example, the
study [84] introduces a two-view fusion-based CNN de-
signed specifically for drivable area detection. This net-
work processes two transformed representations of LIDAR
data to deliver pixel-wise drivable area detection results
in both LiDAR imagery and camera perspective views in
an end-to-end fashion. A mapping layer is incorporated
to transfer features from the LiDAR imagery view to the
camera perspective view, thereby enhancing the network
performance by leveraging the data associations between
these two representations. This method optimizes the uti-
lization of LiDAR data, resulting in more accurate and
comprehensive drivable area detection results in urban en-
vironments. Furthermore, they introduce a drivable area
detection approach [85] that integrates LiDAR and cam-
era data within a conditional random field (CRF) frame-
work, combining both range and color information to im-
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Table 1 Quantitative comparisons of SOTA road scene parsing networks on the Cityscapes dataset [31]. The symbol 4 indicates higher
values correspond to better performance, while |, implies the opposite.'/RGB": RGB images, and ‘Normal’: surface normal maps

Method Input data loU (%) 4 Fsc (%) 1 Pre (%) 1 Rec (%) 1 mloU (%) 4 Rank |
Mask2Former [71] RGB 93.84 96.82 97.14 96.51 74.80 5
SegFormer [34] RGB 93.98 96.90 96.02 97.79 64.51 4
Deeplabv3+ [80] RGB 93.82 96.81 96.99 96.63 68.66 6
HRNet [87] RGB 94.06 96.94 96.29 97.59 70.10 3
FuseNet [27] RGB + Normal 91.60 95.60 96.00 95.30 52.70 9
SNE-RoadSeg [26] RGB + Normal 93.80 96.80 96.10 97.50 5340 7
RTFNet [73] RGB + Normal 94.10 96.90 96.30 97.60 49.60 2
OFF-Net [23] RGB + Normal 89.60 94.50 93.40 95.70 39.20 10
MFNet [72] RGB + Normal 92.10 95.90 94.10 97.70 49.30 8
RoadFormer [11] RGB + Normal 95.80 97.86 97.74 97.97 76.20 1

prove accuracy. In the LIDAR component, a rapid height-
difference scanning strategy is applied within the 2D Li-
DAR range-image domain, enabling precise drivable area
detection in the camera image domain through geomet-
ric upsampling, which relies on accurate LiDAR-camera
calibration. Concurrently, the camera component uses an
FCN to process RGB images. The fusion of detailed and
binary drivable area detection outputs from both LiDAR
and camera data is achieved through a unified CRF frame-
work, effectively optimizing the use of multi-modal data
for robust drivable area detection. They further developed
CLCEFNet [86], a cascaded LiDAR-camera fusion strategy
that operates in two modes: a single-modal mode, which
uses only LiDAR data, and a multi-modal mode, which
combines both LiDAR and camera data to adapt to vary-
ing lighting conditions. The network architecture consists
of three main components: a LIDAR segmentation mod-
ule that detects road points from LiDAR data, a sparse-to-
dense module that enhances the resolution of LiIDAR fea-
ture maps for more precise drivable area detection, and a
LiDAR-camera fusion module that integrates these high-
resolution maps with camera images to provide accurate
road estimations. This framework is designed to deliver
robust and precise drivable area detection across diverse
environmental conditions.

Other representative LiDAR-camera data-fusion ap-
proaches in road scene parsing include LidCamNet [88],
PLARD [89], PLB-RD [90], and USNet [91]. In 2018, the
study [88] introduces LidCamNet, a deep learning-based
drivable area detection framework that utilizes both Li-
DAR point clouds and camera images. First, unstructured
and sparse LiDAR point clouds are projected onto the
camera image plane and upsampled to generate dense
2D images that capture spatial details. Road detection is
then performed using several FCNs, which operate on data
from either a single sensor or through one of three fusion
strategies: early-fusion, late-fusion, and cross-fusion. In
the early and late fusion strategies, multi-modal informa-
tion is fused at specific depth levels within the network.

Table 2 Quantitative comparisons of SoTA road scene parsing
networks on the KITTI Semantics dataset [39]. The symbol 4
indicates higher values correspond to better performance, while
J implies the opposite

Method Fsc (%) 1 loU (%) 1 Acc (%)
NIM-RTFNet [92] 92.59 85.95 96.61
OFF-Net [23] 93.82 86.79 97.08
SNE-RoadSeq [26] 94.85 88.02 9733
SNE-RoadSeg+ [28] 95.11 89.07 97.59
RoadFormer [11] 95.36 90.18 97.83
SNE-RoadSegV2 [6] 96.60 91.75 98.44

The cross-fusion FCN, on the other hand, identifies op-
timal points for integrating data across the LiDAR and
camera branches via trainable cross-connections. This im-
proves the system’s ability to capture and leverage com-
plex spatial relationships, thereby improving drivable area
detection accuracy. In 2019, the study [89] introduces
PLARD, adrivable area detection strategy, which enhances
image-based road detection by integrating LiDAR data.
PLARD employs two primary modules: 1) data space adap-
tation, where LiDAR data is transformed to align with the
visual data space through altitude difference-based trans-
formations to match the perspective view, and 2) feature
space adaptation, which integrates LiDAR features with
visual features through a cascaded fusion structure to op-
timize detection performance. In [90], LRDNet+ is in-
troduced to address the challenge of integrating LiDAR
and visual features, which exist in different spaces, by
learning transformation and fusion operations that en-
hance visual features with LiDAR data. Subsequently, the
study [96] introduces an RGB-LiDAR drivable area de-
tection method, referred to as PLB-RD. By simulating Li-
DAR through depth estimation, the approach uses a fea-
ture fusion network that integrates RGB images with de-
rived depth information to enhance drivable area detec-
tion accuracy. A strategy is also developed to optimize in-
formation flow pathways. Additionally, a modality distilla-
tion strategy is employed to minimize computational de-
mands during model inference, which eliminates the need
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Table 3 Quantitative comparisons of SOTA general-purpose semantic segmentation networks on the KITTI Road dataset [29]. The

symbol 4 indicates higher values correspond to better performance, while | implies the opposite

Method loU (%) 1 Acc (%) 1 Fscore (%) 1 Pre (%) 1 Rec (%) 1 Rank |
ANN [55] 94.94 98.55 9741 96.28 98.55 8
CGNet [62] 92.26 96.93 95.98 95.04 96.93 17
DNLNet [93] 95.16 98.64 97.52 96.42 98.64 3
DPT [67] 94.55 98.16 97.20 96.25 98.16 13
EMANet [94] 94.87 98.64 97.37 96.13 98.64 11
Fast-SCNN [44] 90.24 95.17 94.87 9457 95.17 19
FastFCN [43] 94.95 9842 9741 96.42 9842 7
GCNet [57] 94.92 9843 97.39 96.38 9843 10
ISANet [58] 94.93 9842 97.40 96.40 9842 9
K-Net [69] 95.32 98.72 97.61 96.52 98.72 2
Mask2Former [71] 95.34 98.90 97.62 96.37 98.90 1
MaskFormer [70] 95.12 98.63 97.50 96.39 98.63 4
OCRNet [68] 94.83 98.25 97.35 96.46 98.25 12
PIDNet [45] 95.08 98.39 97.48 96.58 98.39 5
PointRend [54] 94.99 98.49 9743 96.40 98.49 6
SegFormer [34] 88.67 97.06 94.00 91.12 97.06 20
Segmenter [95] 92.73 96.92 96.23 95.55 96.92 16
SETR [64] 92.19 9747 95.94 9445 9747 18

Table 4 Quantitative comparisons of SOTA road scene parsing networks on the KITTI Road dataset [29]. These results are publicly
available at cvlibs.net/datasets/kitti/eval_road.php. The symbol 4 indicates that higher values correspond to better performance, while
| implies the opposite. 'RGB": RGB images, ‘Disp": disparity images, ‘Depth”: depth images, ‘PC": LIDAR point clouds, and ‘Normal’: surface

normal maps

Method Input data MaxF (%) 1 AP (%) 1 Pre (%) 1 Rec (%) 1 FPR (%) | FNR (%) | Rank |
LFD-RoadSeg [79] RGB 95.21 93.71 95.35 95.08 2.56 492 26
HA-Deeplabv3+ [78] RGB + Disp 94.83 93.24 94.77 94.89 2.88 5.11 32
DFM-RTFNet [7] RGB + Disp 96.78 94.05 96.62 96.93 1.87 3.07 "
USNet [91] RGB + Depth 96.89 93.25 96.51 97.27 1.94 273 9
LRDNet+ [90] RGB + PC 96.95 92.22 96.88 97.02 172 298 8
PLB-RD [96] RGB + PC 9742 94.09 97.30 97.54 149 246 5
PLARD [89] RGB + PC 97.03 94.03 97.19 96.88 1.54 312 7
LidCamNet [88] RGB + PC 96.03 93.93 96.23 95.83 2.07 417 17
CLCFNet [86] RGB + PC 96.38 90.85 96.38 96.39 1.99 3.61 15
TVFNet [84] RGB + PC 95.34 90.26 95.73 94.94 233 5.06 25
ChipNet [83] RGB + PC 94.05 88.29 9357 94.53 3.58 547 37
LoDNN [79] RGB + PC 94.07 92.03 9281 95.37 4.07 4.63 36
NIM-RTFNet [92] RGB + Normal 96.02 94.01 96.43 95.62 1.95 438 18
SNE-RoadSeg [26] RGB + Normal 96.75 94.07 96.90 96.61 1.70 3.39 12
SNE-RoadSeg+ [28] RGB + Normal 97.50 93.98 9741 97.58 143 242 4
RoadFormer [11] RGB + Normal 97.50 93.85 97.16 97.84 1.57 2.16 3
SNE-RoadSegV2 [6] RGB + Normal 97.55 93.98 97.57 97.53 1.34 247 2
RoadFormer+ [97] RGB + Normal 97.56 93.74 9743 97.69 142 231 1

for depth estimation networks at this stage. USNet [91]
effectively balances speed and accuracy in drivable area
detection by leveraging both RGB and depth data without
relying on traditional cross-modal feature fusion. Instead,
it employs two lightweight sub-networks to process RGB
and depth data independently, ensuring real-time perfor-
mance. A multi-scale evidence collection module gathers
evidence from each modality across different scales to im-
prove pixel-level classification. An uncertainty-aware fu-
sion module then uses the perceived uncertainty of each

modality to guide the integration of sub-network outputs,
thereby enhancing segmentation accuracy.

Additionally, inspired by FuseNet [27], SOTA approaches
generally adopt duplex-encoder architectures [11, 26, 92],
where each encoder extracts hierarchical features from a
specific data source or modality. The extracted heteroge-
neous features are subsequently fused, enabling the net-
work to gain a more comprehensive understanding of the
environment [89]. For example, NIM-RTFNet [92], SNE-
RoadSeg [26], SNE-RoadSeg+ [28], and SNE-RoadSegV2
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[6] incorporate surface normal information into drivable
area detection. This series employs densely-connected
skip connections to enhance feature extraction in the de-
coder, thereby achieving SoTA performance compared to
other approaches. Drawing on the success of single-modal
Transformers, OFF-Net [23] is the first attempt to apply
a Transformer architecture for feature-fusion road scene
parsing. It utilizes a SegFormer [34] encoder to generate
RGB and surface normal features, outperforming SoTA
CNNs in off-road drivable area detection. Expanding upon
these foundational previous studies, RoadFormer [11] also
adopts the feature-fusion paradigm but distinguishes itself
by employing a novel Transformer architecture for road
scene parsing. RoadFormer incorporates a unique feature
synergy block, which significantly enhances the overall
performance across multiple road scene parsing datasets,
outperforming all other feature-fusion networks.

As for the input data, the most commonly used spa-
tial geometric information includes depth/disparity maps

Table 5 Quantitative comparisons of SoTA road scene parsing
networks on the ORFD [23] dataset. The results are sourced from
the original paper [23] and re-evaluated in the study [11]. The
symbol 1 indicates that higher values correspond to better
performance

Method loU (%) 1 Fsc (%) 4 Pre (%) 1 Rec (%) 1
Published

FuseNet [27] 66.00 79.50 74.50 85.20
SNE-RoadSeg [26] 81.20 89.60 86.70 92.70
OFF-Net [23] 82.30 90.30 86.60 94.30
Re-implemented

FuseNet [27] 59.00 74.20 59.30 99.10
SNE-RoadSeg [26] 79.50 88.60 90.30 86.90
RTFNet [92] 90.70 95.10 93.80 96.50
OFF-Net [23] 81.80 90.00 84.20 96.70
MFNet [72] 81.70 89.90 89.60 90.30
RoadFormer [11] 92.51 96.11 95.08 97.17

Page 8 of 15

[91, 98], LiDAR point clouds [89, 90], and surface normal
maps [11, 26, 28]. Extensive experiments conducted in pre-
vious studies [7, 11, 26, 28] have consistently demonstrated
that surface normal maps and transformed disparity maps
provide the most informative spatial geometric features for
road scene parsing, primarily due to their ability to repre-
sent planar characteristics.

5 Comprehensive comparisons

The quantitative comparisons of SoTA road scene parsing
networks are given in Tables 1, 2, 3, 4, 5, and 6. Their cor-
responding qualitative results are illustrated in Figs. 2, 3, 4,
5, 6, and 7, respectively.

As anticipated, fusing heterogeneous features extracted
from multiple data sources yields superior performance
compared to using features from a single data type. For
instance, RoadFormer significantly outperforms its base-
line network, Mask2Former, across various datasets, with
particularly notable improvements on the SYN-UDTIRI
dataset.

Second, it has been observed that task-specific net-
works generally outperform universal semantic segmen-
tation networks trained for binary or ternary pixel classi-
fications. This improvement can be attributed to two key
factors: data type and architecture. Task-specific networks
often leverage informative spatial geometric data, such as
surface normals and transformed disparity maps, to en-
hance road scene parsing performance. Additionally, ar-
chitectures incorporating robust and effective feature fu-
sion modules enable a more comprehensive understanding
of the road scene, thereby significantly improving segmen-
tation accuracy.

Finally, while road surface detection can now be con-
sidered a well-solved problem due to significant improve-
ments in accuracy, road defect detection remains a chal-
lenging area requiring further research. Current results
are still below satisfactory standards, with state-of-the-art

Table 6 Quantitative comparisons of road defect detection using SoTA road scene parsing networks on the SYN-UDTIRI dataset [11].
The symbol 4 indicates that higher values correspond to better performance, while | implies the opposite. 'RGB": RGB images, and

‘Normal’: surface normal maps

Method Input data loU (%) 4 Fsc (%) 1 Pre (%) 1 Rec (%) 1 Rank |
Mask2Former [71] RGB 46.91 63.87 73.59 56.41 7
SegFormer [34] RGB 36.34 5331 57.23 49.89 8
Deeplabv3+ [80] RGB 3476 51.58 62.54 43.90 10
HRNet [87] RGB 3547 5237 69.09 42.16 9
CGNet [62] RGB 19.36 3244 28.10 3837 12
K-Net [69] RGB 33.15 49.79 63.01 41.15 "
FuseNet [27] RGB + Normal 70.70 82.90 72.10 97.50 6
RTFNet [73] RGB + Normal 90.50 95.00 95.50 94.50 3
OFF-Net [23] RGB + Normal 83.80 91.20 91.90 90.50 5
MFNet [72] RGB + Normal 87.70 93.50 96.20 90.90 4
SNE-RoadSeg [26] RGB + Normal 92.10 95.90 96.70 95.10 2
RoadFormer [11] RGB + Normal 93.51 96.65 96.61 96.69 1
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Figure 2 Qualitative comparisons of SoTA road scene parsing networks on the Cityscapes dataset [31], with road classifications shown in purple
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Figure 3 Qualitative comparisons of SoTA road scene parsing networks on the KITTl Semantics dataset [39], with true-positive, false-positive, and

NIM-RTFNet

RoadFormer

single-modal networks achieving IoU scores of only 19%
to 47% on the SYN-UDTIRI dataset.

6 Discussion
Despite their compelling results, existing road scene pars-
ing approaches still face several key limitations.

First, a significant limitation of feature-fusion networks
is their reliance on spatial geometric information, such as
3D point clouds from LiDAR, which restricts their ap-
plicability in environments lacking LiDAR sensors. Fur-

thermore, inaccuracies in the data, such as variations in
camera-LiDAR calibration, can degrade the fusion of het-
erogeneous features, ultimately reducing the overall per-
formance of road scene parsing. As a result, online, target-
free LIDAR-camera extrinsic calibration is both necessary
and critical [99]. While stereo cameras provide a practi-
cal and cost-effective alternative to LiDAR for obtaining
depth information, incorporating a separate stereo match-
ing network increases computational demands, making
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Figure 4 Qualitative comparisons of SOTA general-purpose semantic segmentation networks on the KITTI Road dataset [29], with road
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Figure 5 Qualitative comparisons of SoTA road scene parsing networks on the KITTI Road dataset [29], with true-positive, false-positive, and
false-negative classifications shown in green, blue, and red, respectively

real-time processing challenging [100]. Additionally, the ues to hinder deployment in sensor-constrained environ-
requirement for spatial geometric information contin- ments. Therefore, there is an urgent need to improve the
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Figure 6 Qualitative comparisons of SOTA road scene parsing networks on the ORFD [23] dataset, with road classifications shown in purple
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Figure 7 Qualitative comparisons of SOTA road scene parsing networks on the SYN-UDTIRI dataset [11], with drivable areas shown in purple and

robustness of single-modal methods and develop effec-
tive cross-modal knowledge distillation techniques (from
RGB+X to RGB) to address these constraints.

Second, feature-fusion networks are typically compu-
tationally intensive, posing challenges for deployment on
edge-computing devices with limited resources. Thus, de-
signing lightweight network architectures, such as those
based on MobileNet or EfficientNet, is crucial for plat-
forms requiring real-time operation. Additionally, net-
works optimized with TensorRT or similar technologies
are essential in robotics and autonomous driving, where
rapid data processing is critical.

Third, the performance of existing networks on public
datasets has nearly reached its ceiling, with recent archi-
tectural innovations yielding only marginal improvements
in accuracy. While several synthetic datasets [11] have
been developed to simulate diverse lighting conditions and
adverse weather scenarios, they remain limited in captur-

ing the complexity and nuanced characteristics of real-
world environments, particularly regarding texture fidelity
and scene authenticity. This limitation is evident in ex-
perimental results from [11, 97], where feature-fusion net-
works show performance saturation on synthetic datasets
but experience significant degradation when tested on
more challenging real-world data. Moreover, networks
pre-trained on synthetic datasets exhibit substantial per-
formance variability when deployed in real-world scenar-
ios, highlighting the inherent shortcomings of current syn-
thetic datasets. These observations underscore the urgent
need for new synthetic or real-world datasets that incorpo-
rate multi-modal data and detailed annotations for various
road elements.

Additionally, the establishment of new benchmarks be-
yond KITTI and Cityscapes is crucial to guide researchers
in developing innovative networks specifically for this task.
While supervised learning currently dominates the field of
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road scene parsing, there is significant untapped potential
in adapting and systematically evaluating semi-supervised
and self-supervised learning paradigms for this domain.
Recent studies have demonstrated promising results, such
as unsupervised frameworks that utilize generative ad-
versarial networks and multi-scale masking techniques
for annotation-free crack detection. These methods could
be effectively extended to broader road defect detection
tasks. Exploring and benchmarking such alternative learn-
ing paradigms would not only expand the methodological
toolkit available to researchers but also address fundamen-
tal limitations of purely supervised approaches, particu-
larly in scenarios where labeled data is scarce or expensive
to obtain.

7 Conclusion

This article provided a brief review of state-of-the-art
CNNs and Transformers developed for general-purpose
semantic segmentation and task-specific road scene pars-
ing, gave comprehensive comparisons of their perfor-
mance across five public datasets, and discussed existing
challenges and future trends in this research field. We hope
this review will serve as a valuable resource for readers and
researchers, guiding the development of next-generation
models for road scene parsing.
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